Mostrar el registro sencillo del ítem

dc.creatorBolatti, Diego
dc.creatorTodt, Carolina
dc.creatorScappini, Reinaldo
dc.creatorGramajo, Sergio
dc.date.accessioned2024-04-04T21:03:10Z
dc.date.available2024-04-04T21:03:10Z
dc.date.issued2022-08-05
dc.identifier.citationBolatti, D.A., Todt, C., Scappini, R., Gramajo, S. (2022). Network Traffic Monitor for IDS in IoT. In: Rucci, E., Naiouf, M., Chichizola, F., De Giusti, L., De Giusti, A. (eds) Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2022. Communications in Computer and Information Science, vol 1634. Springer, Cham.es_ES
dc.identifier.isbn978-3-031-14598-8
dc.identifier.urihttp://hdl.handle.net/20.500.12272/10329
dc.description.abstractAs network services and IoT technologies rapidly evolve, in literature there are many anomalies detection proposals based on datasets to deal with cybersecurity threats. Most of this proposal uses structured data classification and they can recognize with a certain degree of accuracy whether a type of traffic is “anomalous” or not. Even what kind of anomaly it has. Nevertheless, previous works do not clearly indicate the technical methodology to set up the data gathered scenarios. As a main contribution, we are going to show a detailed deployment IoT traffic monitor ready for intelligent network traffic classification. Monitoring and sniffers are an essential concept in network management as it helps network operators to determine the network behavior and status of its components. Anomaly detection also depends on monitoring for decision-making. Thus, this paper will describe the creation of a portable network traffic monitor for IoT using Docker container and bridge networking with SDN.es_ES
dc.formatpdfes_ES
dc.language.isoenges_ES
dc.language.isoenges_ES
dc.rightsembargoedAccesses_ES
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.rights.uriCC0 1.0 Universal*
dc.sourceCommunications in Computer and Information Science 1634. Springer, Cham. (2022)es_ES
dc.subjectNetwork monitoringes_ES
dc.subjectIoTes_ES
dc.subjectIDSes_ES
dc.subjectSDNes_ES
dc.titleNetwork traffic monitor for IDS in IoTes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.affiliationBolatti, Diego. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Centro de Investigación Aplicada a TICS (CInApTIC); Argentina.es_ES
dc.description.affiliationTodt, Carolina. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Centro de Investigación Aplicada a TICS (CInApTIC); Argentina.es_ES
dc.description.affiliationGramajo, Sergio. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Centro de Investigación Aplicada a TICS (CInApTIC); Argentina.es_ES
dc.description.affiliationScappini, Reinaldo. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Centro de Investigación Aplicada a TICS (CInApTIC); Argentina.es_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.type.versionpublisherVersiones_ES
dc.rights.use© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AGes_ES
dc.identifier.doihttps://doi.org/10.1007/978-3-031-14599-5_4
dc.relation.isreferencedbyBedhief, I., Kassar, M., & Aguili, T. (2023). Empowering sdn-docker based architecture for internet of things heterogeneity. Journal of Network and Systems Management, 31(1), 14.es_ES
dc.relation.isreferencedbyWADIAI, Y., EL MOURABIT, Y. O. U. S. E. F., BASLAM, M., NASSIRI, B., & ELHABOUZ, Y. (2023). REAL-TIME CLOUD-BASED AUTOMATION FOR CYBER THREATS DETECTION AND MITIGATION WITH MACHINE LEARNING MODELS. Journal of Theoretical and Applied Information Technology, 101(22).es_ES
dc.creator.orcid0000-0002-8275-4476es_ES
dc.creator.orcid0000-0001-8429-6141es_ES
dc.creator.orcid0000-0001-5091-7931es_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

embargoedAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como embargoedAccess