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Abstract—This work presents a simple model that expose the 

information embedded into a sensor signal allowing to share it 

independently of the signal nature. Today's highly 

interconnected world requires a representation of sensor signals 

that let efficient sharing of embedded information. The 

proposed model is a state matrix that combine two important 

aspects of any signal: Its value inside a range and its behavior 

over the time. From this state matrix is possible to obtain a self-

learning model observing the state transition probabilities and 

the time lapse in each state to deduce signal normality- 

abnormality that allows to infer a better perception of reality.   

Keywords—Edge processing, self-learning, data fusion, 

sensor signal representation, Smart Cities. 

I. INTRODUCTION  

Nowadays, 55% of the world’s population lives in urban 
areas, a proportion that is expected to increase to 68% by 2050 
[1]. therefore, cities are becoming highly complex systems 
and intelligent paradigms are required for efficient and safe 
administration. 

All actions and decisions made by a system are based on 
signals from sensors. Sensor-driven digital systems convert 
perception into information on which operators and systems 
act [2]. An erroneous perception can generate serious 
accidents, environmental impact and economic losses. The 
process of extracting information and knowledge from sensor 
data in a heterogeneous environment is a challenging task. The 
simple fact of detecting normality or abnormality of a signal 
requires having learned its behavior in response to various 
stimuli. 

It could be thought that smart systems and sensors are a 
natural consequence of the overwhelming increase in 
processing power and connectivity [3]. But a system does not 
become intelligent for the simple fact of processing faster and 
having connectivity, but rather, with the extra capacity, 
creating and implementing algorithms to reach a state that 
increases reliability, extracts knowledge from signals and 
generate elements of judgment for correct decision making. 
Complex systems, like Smart Cities, take information from 
sensors and transducers of diverse nature and non-
conventional sensors like traffic density obtained from a 
camera. To feed decision-making processes it is necessary to 

relate signals that, in advance, is not well known how a 
perturbation in one signal could affects others, which a priori 
was not taken as related to the system.  

Recent advances in Big Data have notably contributed to 
the development and consolidation of Smart Cities paradigm 
[4]. “Big Data” generally refers to large and complex sets of 
data that represent digital traces of human activities mixed 
with sensor data [5]. Digital data, generated from a variety of 
devices, are growing at shocking rates [6],[7]. Until now it is 
not clear how and where this huge amount of information 
should be processed. During last years, machine learning 
techniques have been widely adopted in several massive and 
complex data-intensive fields such as medicine, astronomy, 
biology, industry, smart cities, and so on.  

As data sets grow and become more complex, the 
implementation of traditional learning algorithms turns out to 
be more difficult. The goal of this paper is to provide a simple 
model that fits any data set. The main idea of the signal 
representation is to provide an information structure and 
knowledge regardless of the type of signal. Therefore, it 
allows to relate behaviors among diverse signals, quite 
common in complex systems. The algorithms and techniques 
for representing signals proposed in this work should be 
incorporated at the point of acquisition in embedded systems 
to analyze behavior and to extract information and knowledge, 
in accordance with the Edge Computing paradigm [8]. From 
this inference, it is possible to estimate signal states, statistics, 
self-learning patterns, and the class of normal/abnormal or 
illogical behavior and share knowledge of the system to the 
cloud.  

The following sections present the proposed model. In 
sections II, the model is described in detail, highlighting the 
efficient information extraction for any kind of signal. The 
signal representation is described and the learning and 
monitoring stages to detected behavior patterns, especially 
those associated with normality. Using supervised learning it 
is possible to train the model with specific patterns associated 
also with abnormal conditions. 

Section III shows experimental results for different sensor 
signals and datasets. The learning and monitoring signals will 
be shown, highlighting the benefits of the model for signals of 
different nature. In section IV are the conclusions.  



II. INFERENCE ALGORITHMS 

 

A. Sensor signal model 

The goal of this model is to unify the information and 
knowledge embedded in the sensor signal as shown in Fig. 1. 

The sensor signals have embedded the physical system 
information they represent; therefore, the trajectory of these 
signals is in accordance with the dynamics of the associated 
system. The analysis of these trajectories allows inferring the 
system behavior they represent, validating their representation 
and detecting possible anomalous states. 

 

It is proposed to represent the signal according to two 
important aspects: its value and its trend. The signal is 
classified in 12 states. The range of the signal is divided into 
four parts and each of them in three conditions: signal rising, 
falling and at rest, as shown in Fig. 2. This representation will 
be called Δ matrix. Let us remember that sensory signal carries 
the dynamics of the physical system it represents. Therefore, 
the  state’s dynamic, the transition probabilities and the time 
lapse in each state identify the system that the signal 
represents. 

The digitization technique employed to determine the rows of 

the Δ matrix is the one described into the IEEE 21451-001-

2017 standard [9], which considers sensor data as a bounded 

sequence of segments instead of samples. The representation 

of a signal by uniform sampling is not suitable for 

understanding and does not facilitate knowledge inference 

processes. Basically, it is due to one reason: it is unknown 

which samples carry information and which are redundant. 

All signals have some degree of redundancy [10]. If 

oversampling condition is satisfied, the value of the sample 

loses weight in determining the information. In other words, 

redundancy has been generated. The IEEE 21451-001 

standard eliminates redundant samples while maintaining 

signal structure. This representation provides a simpler and 

more direct inference platform for extracting information 

about behavior that determines the rows of  Δ matrix in Fig. 

2. 
If the evolution of the signal is observed on the Δ matrix, 

stochastic variables are generated that capture the essence of 
the signal behavior, especially in cyclic processes. The main 
observed variables are: 

 

𝑷𝑖𝑗 = Transition probability from state i to j. 

𝑻𝒊_𝒎𝒊𝒏 = Minimum time lapsed in state i. 

𝑻𝒊_𝒎𝒂𝒙 = Maximum time lapsed in state i. 

𝑻𝒊_𝒂𝒗𝒆 = Average time lapsed in state i. 

 

 

 
To estimate the transition probabilities 𝑷𝑖𝑗, a twelve-by-

twelve matrix Π is formed by accumulating the state 
transitions as the signal evolves. Once the sensor signal has 
gone through its cyclic operating states, the transition 
probabilities are estimated as the quotient of the number of 
transitions and the total number that occur in a row (1). 

𝑷𝑖𝑗 =
𝐶𝑖𝑗

∑ 𝐶𝑖𝑗
12
𝑗=1

                                         (1) 

𝑖 = 1,2,3, … ,12  ;  𝑗 = 1,2,3, … ,12 

The Π matrix of 144 real numbers captures the  signal 
behavior and, evaluating the sequence of transition 
probabilities, it is possible to determine if the evolution of the  
state changes in the matrix Δ corresponds to normal behavior. 
Everything that is not normal is classified into logical and 
illogical. A pattern is illogical when it is physically impossible 
for the pattern to exhibit that behavior. These events are 
detectable by the state transitions in the Δ array. For example, 
when the minimum time between two non-contiguous cells is 
violated. 

B.  Learning and monitoring stages 

During the learning stage, the transition probabilities are 
estimated. Two signal learning models are proposed. The first 
one is the basic model named BSLM (Basic Signal Learning 
Model). Figure 3. outlines the BSLM. The inputs TH MAX 
and TH MIN are the thresholds for signal monitoring. 

 
 

Fig. 1. Synthesis of  signal processing model . From  digital samples to 

segments at the output of IEEE 21451-001, then this output is processed 

to obtain unified information. 

 
Fig. 3. Block diagram of the Basic Signal Learning Model. It learns one 

signal model using supervised learning. 

 
Fig. 2. Representation of the signal as a matrix of behavior vs range. 

DW means signal going down, UP going up and Q at rest. The arrows 

indicate possible transitions from states 1 and 12 as an example. 



The BSLM model uses supervised learning then learn and 
forget inputs must be provided. When the input learn changes 
from false to true, the BSLM model starts accumulating the 
state transitions in Π array. This process continues until learn 
changes from true to false. This input must be false when the 
signal has traversed all possible states a repeated number of 
times. The Π matrix is estimated using (1) and stored in 
memory. Only one model can be learned, and the outputs are 
true/false. 

The second model is the ASLM (Advance Signal 
Learning Model), Fig. 4. 

 

This model uses JSON (JavaScript Object Notation 
format for input and output. is a lightweight data-interchange 
format. It is easy for humans to read and write. It is simple for 
machines to parse and generate [11], and it is flexible and 
adaptable for new data , while maintaining compatibility with 
pre-existing data structures. This model can learn multiples 
models using supervised or unsupervised learning.  

During the monitoring stage, two indicators are computed 
that have as input the sequence of probabilities observed as the 
signal evolves. The first indicator is the estimation of the mean 
probability of the observed path using the recursive mean 
formula [12], as shown in (2). 

 

𝑝𝑚(𝑘) =
𝑝𝑚(𝑘−1) (𝑘−1)+𝑝(𝑘)

𝑘
                        (2) 

Where 𝑝𝑚(𝑘) is the mean probability at time k and 𝑝(𝑘) 
is the probability of the observed transition. 

The second indicator, short-term estimation, rewards 
when the transition occurs over the maximum probability and 
penalizes when it does not. The indicator u accumulates 
rewards and penalties by saturating in 𝑇𝐻𝑀𝐴𝑋  and 𝑇𝐻𝑀𝐼𝑁 
according to the following expression: 

 

𝑢(𝑘) =

{
 
 
 

 
 
 

     

𝑢(𝑘 − 1) + 𝑝(𝑘)

𝑖𝑓   𝑝(𝑘) = 𝑝𝑚𝑎𝑥(𝑘) 
  

𝑢(𝑘 − 1) − (𝑝𝑚𝑎𝑥(𝑘) − 𝑝(𝑘)) 

𝑖𝑓  𝑝(𝑘) < 𝑝𝑚𝑎𝑥(𝑘)

   (3) 

 

𝑖𝑓 𝑢(𝑘) > 𝑇𝐻𝑀𝐴𝑋
𝑡ℎ𝑒𝑛
→   𝑢(𝑘) = 𝑇𝐻𝑀𝐴𝑋 

 𝑖𝑓 𝑢(𝑘) <  𝑇𝐻𝑀𝐼𝑁
𝑡ℎ𝑒𝑛
→   𝑢(𝑘) = 𝑇𝐻𝑀𝐼𝑁 

Where 𝑝(𝑘)  and is the observed probability and 𝑝𝑚𝑎𝑥(𝑘)   
the maximum probability in the row of the Π matrix where the 
transition occurred. The variable 𝑢(𝑘)  responds quickly to 
uncommon signal patterns as it will be shown in the 
experimental section. The sensitivity is controlled by the 
threshold values. 

The evolution of the state transition can be contrasted with 
different pre-trained models. These models can include 
normality models and specific patterns of interest and run in 
parallel. 

 

III. EXPERIMENTAL RESULTS 

 
The model was evaluated with real signals and from 

databases. Fig 5. shows the monthly average temperature of 
land and ocean of this planet from year 1850 up to 2015 [13]. 
This signal will be used as a first example for learning and 
monitoring.  

Observing the graph of average temperatures, an increase 
in maximum and minimum temperatures in recent years is 
clearly seen. Let's train the model with the first years to 
quantify with the indicators this visible anomaly.  

The model was trained with the first twenty years. Fig. 6. 
shows the Π matrix as a result of the training. 

 

 

 

Fig. 6. Π matrix after training using the first twenty years of the Fig 5 signal. 

 
Fig. 5. Monthy average temperature of land and ocean of Earth planet 

from year 1850 up to 2015. 

 
 

Fig. 4. Block diagram of the Advance Signal Learning Model. The 

inputs and output are formated in JSON. It can learn in supervised and 

unsupervised  way. Multiple models can be stored. 
 



 

 

 

The mean probability 𝑝𝑚(𝑘) computed after training is 
shown in Fig. 7. The increase of the maximum and minimum 
values of temperature observed during the last years, causes 

the decrease of the average probability. 

 

The short-term estimator 𝑢(𝑘)  provides more information 
about the moment of occurrence of the abnormalities. 
Moreover, it responds quickly when the signal apart from 
normality.  The Fig. 8 shows this estimator for the signal in 
Fig. 5.  

If the behavior of the signal is normal, the indicator u(k) 
tends to stay close to the threshold 𝑇𝐻𝑀𝐴𝑋 . As abnormal 
behavior appears due to the low probability of occurrence, the 
indicator begins to deviate from the 𝑇𝐻𝑀𝐴𝑋threshold and tends 
towards the 𝑇𝐻𝑀𝐼𝑁  threshold. In Fig. 8. three regions 
determined by the tendency to move away from 𝑇𝐻𝑀𝐴𝑋  are 
observed. The worst abnormality condition occurs in month 
1650 which corresponds to year 2007. 

A flow signal from an industrial process will be taken as a 
second example. Fig 9 shows the normalized signal 
corresponding to a cyclic process. The model was trained 
using two cycles that correspond to an interval of 3000 
minutes. 

 

 

 

 

 

 

Fig. 10 shows the Π matrix for the flow signal. 

 

 

 
Fig 10.  Π matrix after training using the 3000 minutes of Fig. 9 signal.  

 

 

 

 
 

Fig 11. Normalized flow and transition probability 𝑝𝑚(𝑘). From 

minute 3000 onwards the flow signal was never entered into the 

model, even so the probability pm(k) remains close to the training. 

values. 

 
Fig 8.  Short term estimator 𝑢(𝑘) for the signal in Fig. 5. 𝑇𝐻𝑀𝐴𝑋  =2, 

𝑇𝐻𝑀𝐼𝑁=-2. Note that there are three regions considering how often 

𝑢(𝑘) aparts from 𝑇𝐻𝑀𝐴𝑋. 

 
Fig 7.  Mean probabilty pm(k) for the signal in Fig. 5 

 
Fig 9.  Normalized flow from a cyclic industrial process. The 

model was trained with the first 3000 minutes. 



 

Fig. 11. shows the mean probability 𝑝𝑚(𝑘) for the whole 
signal. The tracking signal, which was never presented to the 
system, is similar, but not the same, generating an average 
path probability that remains close to the learning value. 

The short-term estimator 𝑢(𝑘)  is shown in Fig.12. The 
strong point of the u(k) estimator is the speed of response to 
unlikely transitions. If the patterns are the learned ones, most 
of the time the estimator saturates at the threshold value 
𝑇𝐻𝑀𝐴𝑋. The detection of abnormal states is controlled by the 
value of the threshold and the time it remains in the negative 
threshold. 

 

In Fig.13. Gaussian distribution noise was added with 
σ=0.01 starting from minute 4000. It is observed how the 
average probability begins to decrease with the inclusion of 
noise. 

 

Fig. 14. shows the short-term indicator 𝑢(𝑘) for the noisy 

signal. The goodness of the 𝑢(𝑘) indicator is that it tags the 
time instant in which the signal begins to depart from the 
learned model. 

It is clear from Fig. 14 that, if the signal exhibits its typical 
trajectory, most of the time it is in the positive threshold. 
However, if the signal trajectory includes cells with low 
probability, most of the time it reaches the negative threshold. 
Therefore, this indicator allows a quick discernment between 
normality and abnormality. 

 

 

 

IV. CONCLUSIONS 

 

An information representation model of sensory signals is 
proposed. Unlike the uniform sampling of a signal, which only 
considers the value, this model uses the value and its behavior 
with respect to the past. A deeper understanding of the signal 
is achieved on which a normality/abnormality model is built. 
This representation is plausible for all signals and provides a 
highly versatile unified platform, especially when dealing 
with signals of a diverse nature. 

Knowledge of sensory signals promotes safer and more 
efficient systems since a better inference of reality is achieved. 
The model is easy to implement in embedded systems and 
adapts perfectly to the Edge Computing paradigm. The matrix 
occupies 144 float numbers for each sensor signal state, a low 
requirement for current technology. In addition, the 
implementation of tracking variables consumes low CPU 
resources, therefore these algorithms can be added to 
embedded systems without additional requirements. 

 

 
Fig 13. Normalized flow with Gaussian noise added starting from 

minute 4000. Note how 𝑝𝑚(𝑘) starts to decrese from this instant. 

 
Fig 15. The model applied to classify  and subclassify normal and 

abnormal behavior. 
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Fig 12. Short-term indicator 𝑢(𝑘) for the normalized flow of Fig. 8. 

Note that most of the time the value stays close to 𝑇𝐻𝑀𝐴𝑋  for the 

training and tracking stages. 

 
Fig 14. Short time indicator  𝑢(𝑘) for the normalized flow signal with 

Gaussian noise starting from minute 4000. This indicator tends to the 

lower threshold almost inmediatly. 



The normal state can be classified to identify different 
classes within it. For example, from a traffic density sensor, 
could learn normality on a weekday versus a weekend or a 
holiday. Also, an hourly based learning can be processed to 
infer normality and infer the state at each hour of the day.  

Also, the abnormality can be subclassified to determine 
the type of anomaly. In Fig. 15 the block diagram is shown. 
Decision logic defines the most likely behavior by evaluating 
𝑢(𝑘)  and 𝑝𝑚(𝑘). 

Currently, work is being done on the correlation among 
different signals represented with this model. For example, for 
the traffic density sensor find out how is the relationship 
between weather models and traffic given that from the model, 
through the indicator u(k), the moment in which it changes 
from normality to abnormality is obtained. 
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