Universidad Tecnológica Nacional

Proyecto Final

Regionalización de Caudales Máximos de la Provincia de Entre Ríos

Autores:

- Skidelsky Spahn, Diana Fernanda
- Villaverde, Ángel Gabriel

Director:

Ing. Sato, Rodolfo

Codirectora:

Ing. Mastaglia, María Inés

Proyecto final presentado para cumplimentar los requisitos

ISLA

académicos para acceder al título de Ingeniero Civil

Facultad Regional Paraná

Abril 2022

DECLARACIÓN DE AUTORÍA

Nosotros declaramos que el Proyecto Final "Regionalización de Caudales Máximos de la Provincia de Entre Ríos" y el trabajo realizado son propios.

Declaramos:

- ► Este trabajo fue realizado en su totalidad, o principalmente, para acceder al título de grado de Ingeniero Civil, en la Universidad Tecnológica Nacional, Regional Paraná.
- ► Se establece claramente que el desarrollo realizado y el informe que lo acompaña no han sido previamente utilizados para acceder a otro título de grado o pre-grado.
- Siempre que se ha utilizado trabajo de otros autores, el mismo ha sido correctamente citado. El resto del trabajo es de autoría propia.
- ► Se ha indicado y agradecido correctamente a todos aquellos que han colaborado con el presente trabajo.
- ► Cuando el trabajo forma parte de un trabajo de mayores dimensiones donde han participado otras personas, se ha indicado claramente el alcance del trabajo realizado.

Firmas:

Diana Fernanda Skidelsky Spahn

Legajo: 14606

Ángel Gabriel Villaverde

Legajo: 15062

Fecha: abril 2022

AGRADECIMIENTOS

El desarrollo de este trabajo es el último paso para completar el proyecto que elegimos hace unos años de estudiar esta carrera que nos dará el título de Ingenieros Civiles. Durante este gran camino que hemos realizado recibimos muchísimo apoyo, queremos agradecer:

A los docentes, Ing. Rodolfo Sato e Ing. María Inés Mastaglia, quienes nos introdujeron en la investigación acompañándonos, enseñándonos y apoyándonos en este camino para lograr nuestro gran objetivo final. Nos brindaron desde el primer momento todos sus conocimientos y experiencia, estimulándonos constantemente en este trabajo y en cada oportunidad que la Facultad nos cruzó.

A la docente Roxana Ramírez, quien nos acompañó y brindo sus estudios y conocimientos para el desarrollo de una parte fundamental de este trabajo.

A la Universidad Tecnológica Nacional Facultad Regional Paraná que nos abrió sus puertas desde el primer momento, permitiéndonos cumplir el gran desafío de estudiar una ingeniería acompañándonos y apoyándonos en los momentos más difíciles. A los docentes de la facultad, profesionales que día a día eligen compartir sus experiencias y estudios para que podamos aprender sobre esta profesión y nos estimulan para alcanzar nuestro mayor potencial.

A nuestros familiares que desde el día en que elegimos seguir este camino nos apoyaron, nos ayudaron y nos acompañaron en cada momento. Fueron un pilar fundamental en cada paso que realizamos.

A nuestros amigos de la vida y a los nuevos amigos que nos brindó la Facultad que nos acompañaron en cada situación viviéndolas como propia, festejando a nuestro lado cuando se cumplía un nuevo objetivo.

Diana Fernanda Skidelsky Spahn Ángel Gabriel Villaverde

Universidad Tecnológica Nacional

Abstract

Facultad Regional Paraná Ingeniería Civil

Regionalización de Caudales Máximos de la Provincia de Entre Ríos

Skidelsky Spahn, Diana Fernanda Villaverde, Ángel Gabriel

Abstract:

This study is part of a Research and Development Project (PID 8093) carried out at the National Technological University, Paraná Regional Faculty, called "Regionalization of maximum flows in hydrographic basins of the province of Entre Ríos" directed by Mag. Ing. María Inés Mastaglia.

The province of Entre Ríos has a system of flow gauging stations distributed throughout its length, which is operated by the Secretariat of Infrastructure and Water Policy of the Nation. Daily readings of heights are made with which average flows are estimated, through heightflow curves. In this way, the historical database of each station is formed, which is published in the National Water Information System (SNIH). (https://www.argentina.gob.ar/obras-publicas/hidricas/base-de-datos-hidrologica-integrada).

The study developed in this work has as its objective the regionalization and the study of flow, for different recurrences, of a group of basins located in Entre Ríos, for which there is capacity data and flow data in stations whose registration is from at least 20 years.

In addition, the work integrates sub-basins belonging to basins studied during the development of the Final Degree Projects "Regionalization of the Feliciano Stream Basins for Estimation of Maximum Flows" (Bidegorry, Kohan, Russian, 2021) and "Regionalization of Maximum Flows in the basin of the Gualeguaychú River" (Grilli, Kessler, Sturtz, 2021). The flows of the sub-basins in these studies were obtained through hydrological modeling of calibrated models, due to the limited amount of data from existing official gauging stations for each basin.

Within the input data evaluated and used for the characterization of the basins, two types are distinguished: physical parameters such as area, perimeter, compactness, etc. and hydrological parameters that are related to the behavior of the basins such as rainfall and flows. In the latter, maximum flows were taken into account for the work, which for the subbasins were obtained as results of the aforementioned modeling and for the gauged basins, data were obtained on average daily flows and maximum instantaneous flows. These parameters were the variables used for the multiple correlation analyses.

In the development of the study, the hydrologically homogeneous basins and sub-basins were grouped into regions based on statistical analysis of multiple correlation. For this, the

most influential parameters were taken in the output variable, the maximum flow of the basins, for which, initially, multiple correlation analyzes of the different variables were carried out with the maximum annual average daily flow.

Finally, equations were obtained that allow estimating maximum flows for different required recurrences based on the physical and hydrological parameters of the basins that showed the highest correlation with the maximum flows.

Keywords: basin, maximum flows, regionalization.

RESUMEN

El presente estudio forma parte de un Proyecto de Investigación y Desarrollo (PID 8093) llevado a cabo en la Universidad Tecnológica Nacional, Facultad Regional Paraná, denominado "Regionalización de caudales máximos en cuencas hidrográficas de la provincia de Entre Ríos" dirigido por la Mag. Ing. María Inés Mastaglia.

La provincia de Entre Ríos cuenta con un sistema de estaciones de aforo de caudales distribuidos en toda su extensión, el cual es operado por la Secretaría de Infraestructura y Política Hídrica de la Nación. Diariamente, se efectúan lecturas de alturas con las que se estiman caudales medios, a través de curvas altura-caudal. De esta manera, se conforma la base de datos histórica de cada estación, la cual se publica en el Sistema Nacional de Información Hídrica (SNIH). (https://www.argentina.gob.ar/obras-publicas/hidricas/base-dedatos-hidrologica-integrada).

El estudio desarrollado en este trabajo tiene como objetivo la regionalización y el estudio de caudal, para distintas recurrencias, de un grupo de cuencas ubicadas en Entre Ríos, para las cuales se cuenta con datos de aforo y datos de caudales en estaciones cuyo registro es de al menos 20 años.

Además, el trabajo integra subcuencas pertenecientes a cuencas estudiadas durante el desarrollo de los Proyectos Finales de grado "Regionalización de Cuencas del Arroyo Feliciano para Estimación de Caudales Máximos" (Bidegorry, Kohan, Russian, 2021) y "Regionalización de Caudales Máximos en la cuenca del Río Gualeguaychú" (Grilli, Kessler, Sturtz, 2021). Los caudales de las subcuencas en estos estudios fueron obtenidos mediante la modelación hidrológica de modelos calibrados, debido a la poca cantidad de datos de estaciones de aforo oficiales existentes para cada cuenca.

Dentro de los datos de entrada evaluados y utilizados para la caracterización de las cuencas se distinguen dos tipos: parámetros físicos tal como área, perímetro, compacidad, etc. y parámetros hidrológicos que se relacionan con el comportamiento de las cuencas como precipitaciones y caudales. En estos últimos para el trabajo se tuvieron en cuenta caudales máximos, que para las subcuencas fueron obtenidos como resultados de las modelaciones mencionadas y para las cuencas aforadas se obtuvieron datos de caudales medios diarios y caudales instantáneos máximos. Estos parámetros fueron las variables utilizadas para los análisis de correlación múltiple.

En el desarrollo del estudio se agruparon las cuencas y subcuencas hidrológicamente homogéneas en regiones en base a análisis estadísticos de correlación múltiple. Para ello se tomaron los parámetros más influyentes en la variable de salida, el caudal máximo de las cuencas, para lo cual, inicialmente se realizaron análisis de correlación múltiple de las distintas variables con el caudal medio diario máximo anual.

Finalmente, se obtuvieron ecuaciones que permiten estimar caudales máximos para diferentes recurrencias requeridas en función de los parámetros físicos e hidrológicos de las cuencas que mostraron mayor correlación con los caudales máximos.

Palabras claves: cuenca, caudales máximos, regionalización.

Índice

1. INTRODUCCIÓN	11
2. OBJETIVOS	16
2.1. OBJETIVO GENERAL	16
2.2. OBJETIVOS ESPECÍFICOS	16
3. ÁREA DE ESTUDIO	17
3.1. CUENCA DEL ARROYO FELICIANO.	19
3.2. CUENCA DEL RÍO GUALEGUAYCHÚ.	19
3.3. CUENCA DEL RÍO GUALEGUAY.	19
3.4. CUENCA DEL ARROYO NOGOYÁ.	19
3.5. CUENCA DEL RÍO GUAYQUIRARÓ.	20
3.6. CUENCA DEL ARROYO YUQUERÍ GRANDE.	20
4. MARCO TEÓRICO	21
4.1. CONCEPTOS GENERALES	21
4.2. CARACTERÍSTICAS MORFOMÉTRICAS DE LAS CUENCAS	21
4.2.1. PARÁMETROS ASOCIADOS A LA FORMA DE LA CUENCA	21
4.2.2. PARÁMETROS RELATIVOS AL RELIEVE	23
4.2.3. PARÁMETROS RELATIVOS A LA RED DE DRENAJE	23
4.3. ANÁLISIS ESTADÍSTICO	25
4.3.1. ANÁLISIS MULTIVARIADO	25
4.4. SOFTWARES UTILIZADOS	29
4.4.1. QGIS	29
4.4.2. AFMULTI	30
4.4.3. RSTUDIO	30
5. DESARROLLO Y RESULTADOS OBTENIDOS	31
5.1. INFORMACIÓN HIDROLÓGICA	31
5.1.1. CAUDAL MÁXIMO ANUAL	31
5.1.2. PRECIPITACIÓN MEDIA AREAL	39
5.2. CAŖACTERÍSTICAS FÍSICAS	42
5.3. ANÁLISIS MULTIVARIADO DE LAS VARIABLES	44
5.4. AGRUPAMIENTO DE CUENCAS HIDROLÓGICAMENTE HOMOGÉNEAS	49
5.5. ECUACIÓN REGIONAL DE CAUDALES	60
5.6. ANÁLISIS DE LOS RESULTADOS OBTENIDOS	61
6. CONCLUSIONES	65
7. BIBLIOGRAFÍA	66
7. BIBLIOGRAFIA	
8. ANEXOS	68
8.1. ANEXO A – MAPAS DE SUBCUENCAS MODELADAS	69
8.2. ANEXO B – INFORMACIÓN DE CAUDALES MÁXIMOS DE CUENCAS AFORADAS	82
8.3. ANEXO C – SALIDAS DEL PROGRAMA AFMULTI	95
8.4. ANEXO D – VALORES DE CAUDALES MÁXIMOS DE SUBCUENCAS MODELADAS	
8.5. ANEXO E – VALORES DE PMA DE CUENCAS Y SUBCUENCAS	108
8.6. ANEXO F – VALORES DE LAS VARIABLES ANALIZADAS	115
8.7. ANEXO G – ECUACIONES PARA EL CÁLCULO DE CAUDALES MÁXIMOS	123
8.8. ANEXO H. – GUÍA DE APLICACIÓN	138

Lista de Figuras

Figura 1-1 - Cuencas aforadas seleccionadas para el estudio	12
Figura 1-2 - Cuenca aforada y Subcuencas arroyo Feliciano	13
Figura 1-3 - Cuenca aforada y subcuencas río Gualeguaychú	14
Figura 3-1 - Red hídrica de la provincia de Entre Ríos	17
Figura 3-2 - Cuencas principales de la provincia de Entre Ríos	18
Figura 4-1 – Calidad de Correlación	26
Figura 4-2 - Clúster Jerárquico y Proyección PCA	28
Figura 4-3 - Curva de Andrews	29
Figura 5-1 - Curva de frecuencia de alturas medias diarias río Paraná. Estación 3050 -	
Túnel Subfluvial	32
Figura 5-2 – Comparación de caudales máximos de arroyo Nogoyá con alturas del río	
Paraná	33
Figura 5-3 - Interfaz AfMulti	35
Figura 5-4 - Selección de probabilidades y frecuencias de ajuste	36
Figura 5-5 – Frecuencia experimental y Frecuencias de ajuste	37
Figura 5-6 - Grafica errores cuadráticos medios de frecuencia ECMF y variable ECMV	37
Figura 5-7 – Curvas IDF subcuenca arroyo Feliciano Cierre Paso Medina	41
Figura 5-8 - Curvas de decaimiento o abatimiento areal. Arroyo Feliciano	42
Figura 5-9 - Diagrama de correlación de variables	46
Figura 5-10 - Gráfica Método de Componentes Principales	46
Figura 5-11 - Dendograma de variables	47
Figura 5-12 - Dendograma de grupos de cuencas y subcuencas	50
Figura 5-13 - Curvas de Andrews de Cuencas y Subcuencas en estudio	51
Figura 5-14 - Mapa con la cuenca y las subcuencas del Grupo 1	52
Figura 5-15 - Curvas de Andrews Grupo 1	53
Figura 5-16 - Mapa con la cuenca y las subcuencas del Grupo 2	54
Figura 5-17 - Curvas de Andrews Grupo 2	54
Figura 5-18 - Curvas de Andrews Grupo 3	55
Figura 5-19 - Mapa con la cuenca y las subcuencas del Grupo 3	56
Figura 5-20 - Mapa con cuencas y subcuencas del Grupo 4	57
Figura 5-21 - Curvas de Andrews Grupo 4	58
Figura 5-22 - Mapa con la cuenca y subcuencas del Grupo 5	59
Figura 5-23 – Curvas de Andrews Grupo 5	59
Figura 5-24 - Segregación de grupos	64

Lista de Tablas

Tabla 3-1 – Años de aforo de cada cuenca	18
Tabla 4-1 - Distribución probabilística y Ajuste de Parámetros	30
Tabla 5-1 - Serie de caudales máximos anuales	33
Tabla 5-2 - Caudales para distintas probabilidades. Arroyo Nogoyá – Estación 3037 – F	RP N°
11	38
Tabla 5-3 - Resumen caudales máximos software AfMulti	38
Tabla 5-4 - Cálculo de PMA	40
Tabla 5-5 - Características físicas generales	42
Tabla 5-6 - Parámetros físicos de las cuencas aforadas	43
Tabla 5-7 - Parámetros físicos de las subcuencas (Cuenca Feliciano)	43
Tabla 5-8 - Parámetros físicos de las subcuencas (Cuenca Gualeguaychú)	44
Tabla 5-9 - Datos de las cuencas y subcuencas para la regionalización	48
Tabla 5-10 - Variables de estudio Grupo 1	52
Tabla 5-11 – Variables de estudio Grupo 2	53
Tabla 5-12 – Variables de estudio Grupo 3	55
Tabla 5-13 - Variables de estudio Grupo 4	57
Tabla 5-14 - Variables de estudio Grupo 5	58
Tabla 5-15 - Ecuación regional de caudal Grupo 1 TR 2 años	60
Tabla 5-16 - Errores relación de caudales Grupo 1	61
Tabla 5-17 - Errores relación de caudales Grupo 2	62
Tabla 5-18 - Errores relación de caudales Grupo 3	62
Tabla 5-19 - Errores relación de caudales Grupo 4	63
Tabla 5-20 - Errores relación de caudales Grupo 5	63

Lista de Abreviaciones y Símbolos

A: Área

CAA: Coeficiente de Abatimiento Areal

d: Duración

ECMF: Errores cuadráticos medios de frecuencia

ECMV: Errores cuadráticos medios de variable

ER: Estación de referencia

h: horas

i: Pendiente media del curso principal

IDF: Intensidad Duración Frecuencia

Kc: Coeficiente de compacidad o índice de Gravelius

Lc: Longitud del curso principal

Km: Kilómetros

Km²: Kilómetros cuadrados

m: Metros

m³/s: Metros cúbicos por segundos

mm: Milímetros

Qins: Caudal Instantáneo Máximo Qmd: Caudal Máximo Medio Diario

P: Perímetro

PMA: Precipitación Media Areal

Q: Caudal Máximo Anual

R: Coeficiente de almacenamiento

RP: Ruta Provincial

SNIH: Sistema Nacional de Información Hídrica

TR: Recurrencia

Tc: Tiempo de concentración

1. INTRODUCCIÓN

El agua es un elemento de vital importancia para los seres vivos y demás componentes del planeta Tierra. Es un recurso que permite la vida en su consumo directo y, asimismo, es primordial para la elaboración de productos, el desarrollo de distintas actividades como agropecuarias, deportivas, turísticas, construcción, etc. Además, es un recurso fundamental utilizado como vía de transporte disminuyendo los costos de larga distancia.

El 70% del planeta está conformado por agua, encontrándose naturalmente en cursos que van desde pequeños arroyos hasta los grandes océanos que rodean los continentes. Debido a esto, durante toda la historia de la humanidad se han realizado obras civiles e hidráulicas en donde el agua y su comportamiento era una variable importante o principal tenida en cuenta al momento de pensar, diseñar y calcular el proyecto a construir.

Cuando ocurre un exceso de este recurso debido a grandes lluvias que provocan inundaciones y crecimiento de ríos o arroyos, o, por el contrario, hay una gran escasez de agua debido a sequías prolongadas se generan problemas para la sociedad. Éstos deben ser resueltos por los organismos gubernamentales a través de gestiones de obras que garanticen la continuidad de la cotidianidad de la población, sin verse afectadas por ninguna de estas problemáticas y que regulen el uso del recurso de forma eficiente y racional.

Para encontrar soluciones a los problemas donde se vea involucrada el agua ya sea naturalmente o debido a un exceso o escasez de ésta, es fundamental conocer su régimen e interacción con el ambiente. El estudio de los sistemas hídricos es una tarea compleja debido a la variabilidad de constantes que influyen en su comportamiento. Es esencial contar con datos e información histórica para poder desarrollar una investigación que dé resultados razonables y confiables.

El diseño adecuado de obras hidráulicas tiene como variable hidrológica fundamental el caudal máximo que se produce, para una determinada recurrencia, o período de retorno considerado para el diseño, del o los cauces que puedan intervenir. También, es un parámetro fundamental a tener en cuenta en el análisis del riesgo hídrico en zonas urbanizadas o a desarrollar.

El estudio e investigación de fenómenos hidrológicos supone un gran desafío para la práctica de la ingeniería, ya que existe una notoria falta de mediciones que provean datos de información histórica suficiente. Llevar a cabo la cuantificación de los procesos y los resultados obtenidos suele ser de carácter incierto, dificultando incluso el uso de herramientas matemáticas, estadísticas y de modelación ya que escasean los datos de mediciones confiables para la calibración de los modelos.

El término regionalización se utiliza en Hidrología para denominar la transferencia de información de un sitio a otro dentro de un área de comportamiento hidrológico semejante (Tucci, 2002). De esta manera, se realiza la regionalización de cuencas para obtener información hidrológica de aquellas que el registro de datos sea escaso o directamente no posean. Un beneficio adicional del análisis regional de la información es su contribución al mejoramiento de una red de observaciones de datos hidroclimáticos, a medida que la metodología explora la información disponible e identifica vacíos. (Zucarelli, 2017).

Con la regionalización de cuencas hidrológicamente homogéneas, la Hidrología encontró un camino a través del cual se pueden estimar las variables comprendidas dentro del comportamiento de los sistemas hídricos tales como precipitaciones, caudales de diseño, tormentas de diseño, capacidad de los cursos de agua, etc.

La provincia de Entre Ríos cuenta con una gran red hidrográfica que la caracteriza, limitada por grandes ríos y numerosos arroyos que son alimentados por importantes cuencas. Sin embargo, los aforos son limitados, resultando así insuficientes para disponer de datos en puntos de interés donde se requiere conocer, por ejemplo, el caudal de diseño para una obra hidráulica. Actualmente, dentro del sistema de registro de caudales de la Secretaría de Infraestructura y Política Hídrica de la Nación hay aproximadamente 10 cuencas, en toda la provincia, que poseen estaciones de aforo de caudal, de las cuales, 6 poseen un mínimo de 20 años de registro histórico.

Esta situación motivó a realizar este estudio, en el cual, se desean determinar variables que sean representativas del comportamiento de las cuencas de la provincia, en base a los datos de cuencas con mediciones sistemáticas de caudales que realiza, a través de las estaciones hidrométricas la Secretaría de Infraestructura y Política Hídrica de la Nación. Esta información se publica en el SNIH del Ministerio de Obras Publicas Argentina.

Las cuencas analizadas en este proyecto fueron las que contaban con suficientes datos de entrada de calidad para realizar el estudio. Las mismas se presentan en la Figura 1-1.

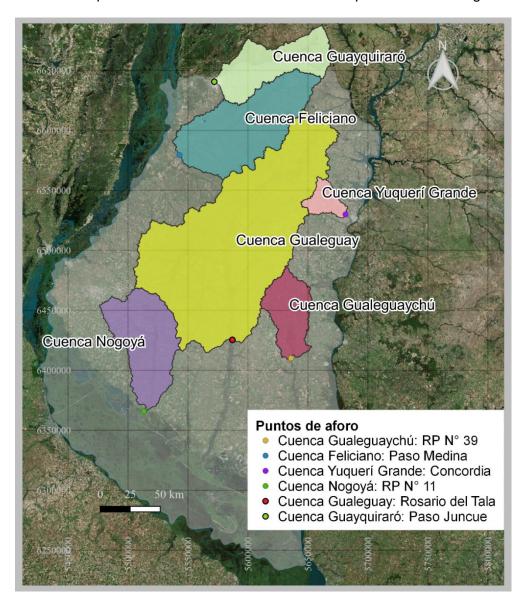


Figura 1-1 - Cuencas aforadas seleccionadas para el estudio

El punto de cierre de cada cuenca aforada se tomó en donde se ubicaba la estación de aforo.

Los criterios adoptados para seleccionar las cuencas aforadas con datos diarios de caudales máximos se desarrollan en el Capítulo 5 del presente informe. En resumen, son los siguientes:

- Contar con un registro histórico de datos de al menos 20 años,
- No se consideraron de datos con valores incoherentes en comparación a los restantes del registro, ni años de registro con faltantes de mediciones de seis meses o más,
- No se consideraron datos que pueden ser afectados por curvas de remanso, como en el caso del arroyo Nogoyá, debido a niveles altos del río Paraná.

En el estudio se sumaron a la base de datos subcuencas pertenecientes a las cuencas del arroyo Feliciano y del río Gualeguaychú, cuyos datos de caudales se obtuvieron de modelos hidrológicos calibrado, las mismas se presentan en la Figura 1-2 y Figura 1-3 respectivamente.

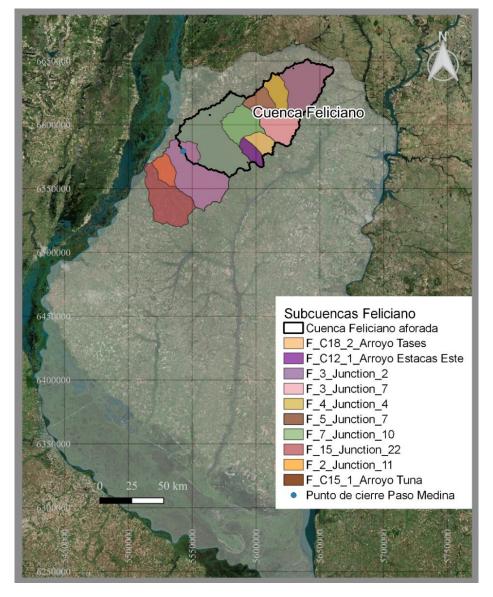


Figura 1-2 - Cuenca aforada y Subcuencas arroyo Feliciano

Los valores de caudales máximos y de los distintos parámetros de estas subcuencas pertenecientes a las cuencas del arroyo Feliciano y el río Gualeguaychú, fueron obtenidos en los Proyectos Finales de Bidegorry et al. (2021) y Grilli et al. (2021), respectivamente.

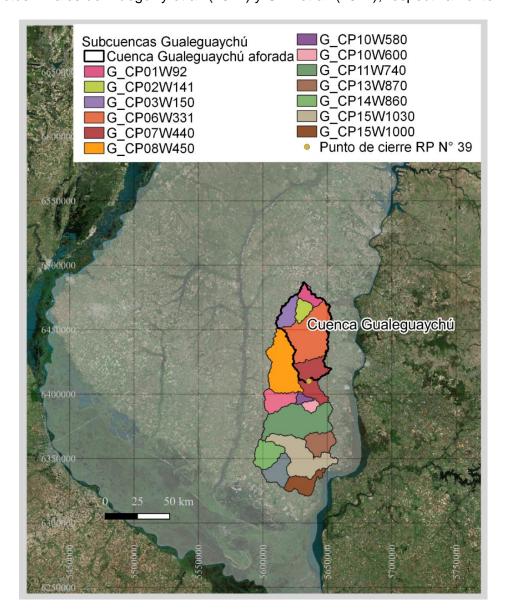


Figura 1-3 - Cuenca aforada y subcuencas río Gualeguaychú

De este modo se logró completar una población suficiente para realizar un análisis estadístico, teniendo en cuenta también cuencas de diferentes superficies dentro del análisis realizado, desde áreas menores a grandes.

Cabe destacar que en estas figuras se graficaron los contornos de las cuencas aforadas, junto a sus puntos de aforo o cierre, de manera que pueda visualizarse la ubicación de éstas respecto de las subcuencas con datos de caudales obtenidos de modelos hidrológicos. Además, para las subcuencas ubicadas aguas abajo solo se observa la superficie adicional a las subcuencas inmediatas ubicadas aguas arriba.

En el Anexo A se presentan las subcuencas del arroyo Feliciano y el río Gualeguaychú ubicadas en el mapa de Entre Ríos individualmente para evitar superposiciones graficas entre éstas.

Este trabajo de investigación tiene el principal propósito de cubrir la carencia de datos hidrométricos mediante la aplicación de técnicas de regionalización de cuencas hidrológicamente homogéneas de la provincia de Entre Ríos que cuenten con registros históricos de caudal aforado o resultantes de modelos hidrológicos calibrados.

Planteando la hipótesis que dentro de las características y parámetros que condicionan el comportamiento del caudal máximo de una cuenca, existen variables que influyen principalmente en la variabilidad de éste, lo cual puede verse reflejado por medio de un análisis de correlación múltiple.

De este modo se trata de obtener ecuaciones que permitan una estimación aproximada del caudal en otras cuencas que no cuenten con un registro de aforo de caudales, a través de los parámetros físicos e hidrológicos seleccionados como aquellos que tengan mayor incidencia sobre el valor del caudal máximo para distintas recurrencias, permitiendo disminuir la incertidumbre en el diseño de obras hidráulicas.

2. OBJETIVOS

2.1. OBJETIVO GENERAL

El objetivo de esta investigación es la regionalización de caudales máximos de cuencas hidrológicamente homogéneas. Obteniendo previamente aquellos parámetros que tienen mayor incidencia en el comportamiento del caudal máximo para cada región o grupo de cuencas homogéneas, aplicando para ello métodos estadísticos.

2.2. OBJETIVOS ESPECÍFICOS

Para lograr el objetivo general se plantearon los siguientes objetivos específicos:

- Determinar las variables que tienen mayor incidencia sobre el caudal máximo utilizando herramientas estadísticas de análisis multivariado tales como matrices de correlación, análisis de componentes principales y Clústers con Dendogramas.
- ▶ Definir regiones hidrológicamente homogéneas de cuencas aforadas y subcuencas modeladas, en función de las variables obtenidas anteriormente, a través de la aplicación de técnicas del análisis multivariado.
- Obtener ecuaciones para estimar valores de caudales máximos para las recurrencias de 2, 5, 10, 20, 50 y 100 años para cada región definida, en base a variables físicas e hidrológicas.

3. ÁREA DE ESTUDIO

La provincia de Entre Ríos tiene una gran cantidad de cursos de agua que conforman sus límites políticos: al Oeste y Este se encuentran los ríos mayores Paraná y Uruguay respectivamente. Al Norte los ríos Guayquiraró y Mocoretá y los arroyos Basualdo y Tuna que la separan de la provincia de Corrientes; al Sur se ubica el Sistema Delta del río Paraná. Finalmente, en el interior, la conforma una gran red hídrica donde se destacan el río Gualeguaychú, los arroyos Feliciano, Nogoyá, Las Conchas y Yuquerí Grande, ubicándose en el centro de la provincia el río Gualeguay y en el Sureste el río Gualeguaychú.

En la Figura 3-1 se presentan los cursos que conforman la red hídrica de la provincia de Entre ríos.

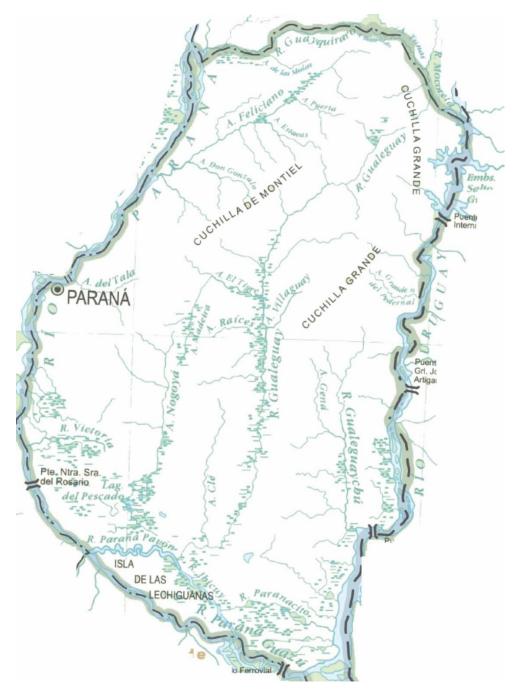


Figura 3-1 - Red hídrica de la provincia de Entre Ríos

En la Figura 3-2 se presentan las principales cuencas de la provincia, pertenecientes a los cursos anteriormente nombrados.

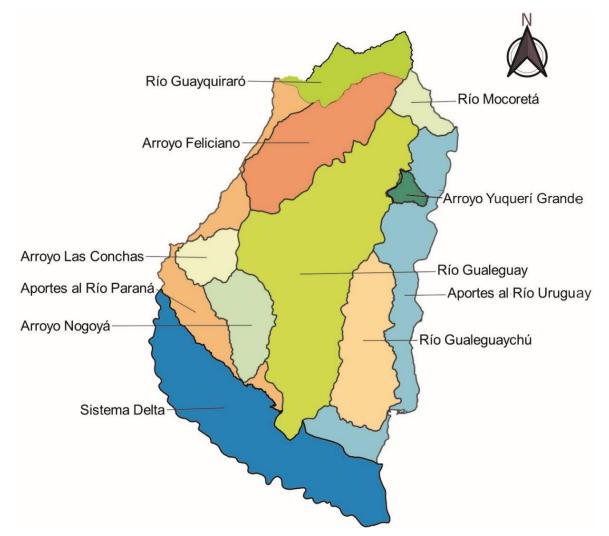


Figura 3-2 - Cuencas principales de la provincia de Entre Ríos

En este estudio se trabajó con aquellas cuencas que, tal como se mencionó anteriormente, poseen estaciones de aforo de caudal con registros de datos de al menos 20 años de antigüedad. Esta condición derivó en que las cuencas que cumplían con el requisito principal fueran únicamente las que se presentan en la Tabla 3-1.

Tabla 3-1 – Años de aforo de cada cuenca

Cuenca	Estación	Ubicación	Años de medición
Gualeguay	3004	Rosario del Tala	28
Gualeguaychú	3030	RP N39	31
Nogoyá	3037	RP N011	36
Yuquerí Grande	3061	Concordia	23
Feliciano	3003	Paso Medina	44
Guayquiraró	3808	Paso Junque 37	

Además, para poder desarrollar los métodos estadísticos elegidos para este estudio se procedió a sumar a las mismas subcuencas de los modelos hidrológicos calibrados del arroyo Feliciano y el río Gualeguaychú.

A continuación, se describen brevemente las características principales de las cuencas aforadas y sus correspondientes cursos principales los cuales fueron el objeto de estudio de esta investigación.

3.1. CUENCA DEL ARROYO FELICIANO.

La cuenca del arroyo Feliciano está ubicada al noroeste de Entre Ríos y forma parte de las cuencas de mayor superficie de la provincia, con un área de aproximadamente 8200 km².

Debido a su ubicación, entre las cuchillas entrerrianas, posee numerosas lomadas que derivan en barrancas abruptas y profundas con taludes suaves. El suelo de esta cuenca se caracteriza por ser muy arcilloso.

El arroyo Feliciano tiene una longitud de curso principal de poco más de 260 km y desemboca en el río Paraná. Fluye de Noreste a Sudoeste atravesando tres departamentos de la provincia: La Paz, Feliciano y Federal. Recibe el aporte de numerosos arroyos que se encuentran en dichos departamentos.

3.2. CUENCA DEL RÍO GUALEGUAYCHÚ.

La cuenca del río Gualeguaychú se encuentra ubicada al sudeste de la provincia de Entre Ríos y posee un área aproximada de 6700 km². La cuenca es alargada en dirección Norte-Sur, con una pendiente de 10 m/km. El río Gualeguaychú desemboca en el río Uruguay siendo uno de sus principales afluentes.

El río Gualeguaychú se ubica en el medio de la cuenca siendo su principal cauce. Es alimentando por numerosos arroyos de diferentes longitudes y cauces que desembocan en su margen izquierda y derecha. El curso principal del río tiene una longitud de 268 km y escurre de Norte a Sur.

3.3. CUENCA DEL RÍO GUALEGUAY.

La cuenca del río Gualeguay posee una gran extensión, ocupando el 30% del territorio de la provincia, conformando así el grupo de las mayores cuencas interiores de la provincia junto a la del arroyo Feliciano y el río Gualeguaychú. Tiene una superficie que supera los 20.000 km².

El río Gualeguay es el principal cauce de la cuenca, posee una longitud de aproximadamente 486 km y un caudal que varía entre 14 y 3500 m³/s (según Dirección de Hidráulica de Entre Ríos). Su nacimiento se encuentra en la confluencia de las Cuchillas Grandes y Montiel y recorre de Norte a Sur por el centro de la provincia desembocando finalmente en el río Paraná.

La cuenca posee un suelo conformado principalmente por arcillas y un relieve tal que permite que el agua de lluvia, su principal aporte, se escurra fácilmente por los cauces. Al llegar a zonas de características meandrosas su evacuación se torna más lenta provocando desbordes e inundaciones en épocas de crecidas.

3.4. CUENCA DEL ARROYO NOGOYÁ.

La cuenca del arroyo Nogoyá está ubicada en el suroeste de la provincia, limitando al Sur con la zona del Delta del Paraná. Tiene una superficie que ronda los 3800 km². La cuenca comienza a formarse al sur de la Cuchilla de Montiel extendiéndose hasta limitar con la zona del Delta del Paraná.

El arroyo Nogoyá es uno de los mayores que hay en Entre Ríos con una longitud de 160 km que se desarrolla en principio en dirección Sureste y al final hacia el Sur desembocando en el río Paraná. En su extensión es alimentado por diversos arroyos de menor porte que se encuentran en la zona.

3.5. CUENCA DEL RÍO GUAYQUIRARÓ.

La cuenca del río Guayquiraró forma parte de las provincias de Entre Ríos y Corrientes. Tiene un área aproximada de 1900 km² y desemboca en el río Paraná.

El río Guayquiraró se ubica al norte del territorio entrerriano, se clasifica como río de llanura y posee una longitud de 162 km. Sus afluentes principales son arroyos de los departamentos de La Paz, Feliciano y Federación.

3.6. CUENCA DEL ARROYO YUQUERÍ GRANDE.

La Cuenca del arroyo Yuquerí Grande tiene una superficie aproximada de 670 km² y está al Este de la provincia de Entre Ríos. Se ubica en zonas de cuchillas por lo que se caracteriza por tener altillanuras con suelos arenosos y con sedimentos arcillosos.

El arroyo Yuquerí Grande recorre el departamento Concordia de Oeste a Este desembocando en el río Uruguay en la ciudad de Concordia. Generalmente posee un pequeño caudal que se incrementa con las precipitaciones debido a que la zona cuenta con depresiones que desagotan en este arroyo. Además, recibe aporte de pequeños arroyos de la zona.

4. MARCO TEÓRICO

4.1. CONCEPTOS GENERALES

(A) Cuenca hídrica

Es un área de terreno donde el agua drena hacia un punto común como un arroyo, río o lago cercano.

(B) Caudal máximo anual

Es el máximo caudal que se presenta en un año determinado. Para su determinación, es necesario que la estación de aforo tenga limnigrafo (regla graduada).

(C) Caudal instantáneo máximo

Es el caudal que ocurre en una sección de control, en un lapso determinado, para medirlo debe disponerse de un limnigrafo. Este es un dato necesario para determinar la capacidad de escurrimientos en obras hidráulicas que no deben ser sobrepasadas.

(D) Caudal máximo medio diario anual

Es el máximo caudal, resultado del promedio diario de caudales, que se presenta en un año determinado.

(E) Aforo

Es la operación de campo que tiene como fin realizar la determinación del caudal que escurre por una sección de un río.

(F) Curva altura-caudal

Se construye con la realización de varios aforos en una sección para distintos niveles de agua. Para ello la sección debe ser constante, no sufrir variaciones de las márgenes, no tener erosiones o sedimentaciones importantes, no estar afectada por remanso y un régimen del río establecido. Es decir, debe existir una relación biunívoca entre altura y caudal.

(G) Serie de datos

Es un conjunto de valores de numéricos o no numéricos ligados a una secuencia temporal.

4.2. CARACTERÍSTICAS MORFOMÉTRICAS DE LAS CUENCAS

Las cuencas se pueden caracterizar por distintos parámetros hidrológicos que dependen de sus características morfométricas.

4.2.1. PARÁMETROS ASOCIADOS A LA FORMA DE LA CUENCA

Dentro de los parámetros asociados a la forma de la cuenca se encuentran los siguientes:

(A) Superficie de la cuenca (A)

Es la superficie delimitada por la divisoria de la cuenca. Se encuentra definida como la proyección horizontal de toda la superficie de drenaje de un sistema de escorrentía dirigido-directa o indirectamente a un mismo cauce natural. Corresponde a la superficie delimitada por la divisoria de aguas de la zona de estudio; este parámetro se expresa normalmente en km².

(B) Perímetro de la cuenca (P)

Es la longitud sobre un plano horizontal, que recorre la divisoria de aguas. Este parámetro se mide en unidades de longitud y se expresa normalmente en metros o kilómetros.

(C) Longitud de la cuenca (L)

Se define como la distancia horizontal desde el punto de cierre de la cuenca hasta otro punto aguas arriba donde la tendencia general del río principal corte la línea de contorno de la cuenca.

(D) Ancho de la cuenca (B)

Se define como la relación entre el área y la longitud de la cuenca.

$$B = A/L$$

(E) Coeficiente de compacidad (Kc)

Propuesto por Gravelius, compara la forma de la cuenca con la de una circunferencia, cuyo círculo inscrito tiene la misma área de la cuenca en estudio. Se define como la razón entre el perímetro de la cuenca y el perímetro de la circunferencia de igual área.

Este coeficiente adimensional, independiente del área estudiada tiene por definición un valor de uno para cuencas imaginarias de forma exactamente circular. Nunca los valores del coeficiente de compacidad serán inferiores a uno. El grado de aproximación de este índice a la unidad indicará la tendencia a concentrar fuertes volúmenes de aguas de escurrimiento, siendo más acentuado cuanto más cercano a uno sea, es decir mayor concentración de agua.

Para calcularlo se utiliza la expresión:

$$k_c = \frac{P}{P_c} = \frac{P}{2\pi R} \to k_c = 0.28 * \frac{P}{\sqrt{A}}$$

Siendo R es el radio de la circunferencia de igual área que la cuenca, luego: $A = \pi R^2$

(F) Tiempo de concentración (Tc):

Es el tiempo para el cual toda la cuenca comienza a contribuir, este es el tiempo de flujo desde el punto más alejado hasta la salida de la cuenca (Chow et al., 1994), en otras palabras, es el tiempo que una partícula de agua tarda en llegar del punto más alejado al punto de desagüe (Fattorelli y Fernandez, 2007). Existen muchas fórmulas empíricas para obtener una aproximación. La fórmula desarrollada por Graf et al. (1982) a partir de estudios de cuencas del estado de Illinois:

$$Tc = 1,54L_c^{0,875}i^{-0,181}$$

donde:

Tc: tiempo de concentración (horas).

Lc: longitud del flujo por el curso principal desde la salida a la divisoria (millas).

i: pendiente del curso principal determinada a partir de elevaciones en los puntos que representan 10 y 85% de la distancia a lo largo del canal, en pie/milla.

(G) Coeficiente de almacenamiento (R):

Es un coeficiente que tiene en cuenta el efecto de almacenamiento en la red de cauces de la cuenca. La fórmula desarrollada por Graf et al. (1982) a partir de estudios de cuencas realizadas en el estado de Illinois:

$$R = 16.4L_c^{0.342}i^{-0.790}$$

donde:

R: coeficiente de almacenamiento de Clark (horas).

Lc: longitud del flujo por el curso principal desde la salida a la divisoria (millas).

i: pendiente del curso principal determinada a partir de elevaciones en los puntos que representan 10 y 85% de la distancia a lo largo del canal, en pie/milla.

(H) Coeficiente lambda (λ):

Es el coeficiente que relaciona los parámetros del hidrograma unitario de Clark, Tc y R. Se calcula mediante la siguiente ecuación:

$$\lambda = \frac{R}{T_c + R}$$

donde:

R: coeficiente de almacenamiento de Clark (horas).

Tc: tiempo de concentración (horas).

El valor que puede tomar el coeficiente lambda varía entre 0,1 y 0,9, correspondiendo el primer valor a zonas de altas pendientes y el último valor a zonas con poca pendiente y con uso agrícola.

4.2.2. PARÁMETROS RELATIVOS AL RELIEVE

De los niveles de la cuenca dependen en gran medida la cobertura vegetal, la biota, el clima, el tipo y uso del suelo y otras características fisiográficas de un territorio. Los elementos más representativos de las cuencas, derivados de la elevación, son:

(A) Curva hipsométrica:

Es la representación gráfica de la variación altitudinal de una cuenca, por medio de una curva tal, que a cada altura le corresponde un respectivo porcentaje del área ubicada por encima de esa altura.

Se construye llevando en el eje de las abscisas, longitudes proporcionales a las superficies proyectadas en la cuenca, en km² o en porcentaje, comprendidas entre curvas de nivel consecutivas hasta alcanzar la superficie total y llevando al eje de las ordenadas la cota de las curvas de nivel consideradas.

(B) Elevación media:

La elevación media puede calcularse gráficamente a partir de la curva hipsométrica ingresando por el eje que representa el área con el valor correspondiente al 50% y leyendo el valor de cota correspondiente.

4.2.3. PARÁMETROS RELATIVOS A LA RED DE DRENAJE

Las cuencas poseen sistemas de drenaje constituidos por el curso principal y sus afluentes. Éstos están conectados entre sí influyendo en la respuesta de la cuenca ante una precipitación. Para cuantificar la influencia de las características del curso principal y la forma en que se conectan los cauces que conforman el sistema de drenaje se utilizan los siguientes parámetros:

(A) Longitud del curso principal (Lc):

Corresponde a la longitud del cuerpo de agua que le da nombre a la cuenca de estudio, en este parámetro se tienen en cuenta la sinuosidad cauce; este parámetro se expresa normalmente en kilómetros.

(B) Longitud del curso hasta la divisoria (LF):

Se estima prolongando longitud del curso principal hasta la divisoria sumándole la distancia en línea recta que separa ambas medidas.

(C) Pendiente media del curso principal (i)

Es uno de los parámetros que más influyen sobre la respuesta hidrológica de la cuenca. A medida que aumenta la pendiente media de cauce, aumenta la velocidad del flujo y, por lo tanto, disminuye el tiempo de concentración de la cuenca. En general la pendiente de fondo es mayor en la cabecera y decrece a medida que el curso se aproxima a la desembocadura.

Un perfil aproximado del cauce puede obtenerse en base a cartas topográficas, midiendo la distancia desde la cabecera hasta cada intersección del canal con una curva de nivel.

El método simple de cálculo de la pendiente media es: $i = \frac{c_{\text{max}} - c_{\text{min}}}{Lc}$

Donde:

i: es la pendiente media de cauce calculada con el método simple

Cmáx: es la cota de fondo del curso en la cabecera

Cmín: es la cota de fondo en la sección de cierre de la cuenca

Lc: es la longitud del curso considerando la sinuosidad curso.

(D) Número de orden de un cauce (Ni):

El número de orden de un cauce, Ni, es una medida de la ramificación y jerarquía del cauce principal de una cuenca. Teniendo en cuenta los cursos intermitentes y permanentes, Horton (1945) propuso el siguiente procedimiento para el cálculo de Ni:

- Los canales reconocibles más pequeños se designan como de orden 1. Normalmente estos cursos fluyen durante los meses húmedos del año hidrológico 1 (cursos intermitentes).
- Cuando dos cursos de orden i se unen, se genera un curso de orden i+1.
- Cuando un curso de orden menor se une con otro de orden mayor, el curso resultante hacia aguas abajo retiene el mayor de los dos órdenes.
- El orden de la cuenca de drenaje es el mismo que el orden del cauce en la sección de salida; es decir, el mayor orden en la cuenca.

(E) Densidad de drenaje (Dd):

La densidad de drenaje, Dd, es el cociente entre la suma de las longitudes de todos los cursos en la cuenca y el área de drenaje. Se puede expresar por ej., en m/km².

$$D_d = \frac{\sum_{i=1}^n L_i}{\Delta}$$

donde:

Dd: es la densidad de drenaje,

Li: es la longitud del curso i-ésimo de la cuenca, n: cantidad total de cursos en la cuenca.

Un valor alto de Dd refleja una cuenca bien drenada, con un tiempo de concentración corto. En general, es el caso de cuencas relativamente impermeables, con pendientes altas y escasa cobertura vegetal. Un valor bajo de Dd indica una cuenca pobremente drenada. En general corresponde a cuencas con suelos permeables y baja pendiente.

Con el fin de catalogar una cuenca como bien o mal drenada, analizando su densidad de drenaje, se puede considerar que valores de densidad de drenaje próximo a 0,5 km/km² o mayores indican una red de drenaje eficiente.

(F) Perfil longitudinal:

El perfil longitudinal del cauce principal representa las diferentes alturas desde su nacimiento hasta su desembocadura.

4.3. ANÁLISIS ESTADÍSTICO

El análisis estadístico es una importante herramienta para el investigador debido a la posibilidad de analizar grandes volúmenes de datos. Para realizar este análisis, luego de la recolección de datos, primero se debe llevar a cabo la organización y depuración de los datos, eliminando la información dudosa. Como resultado del mismo se puede obtener la representación e interpretación de las variables que se consideran que intervienen en el fenómeno físico en estudio.

En virtud de asociar los eventos hidrológicos a un período de ocurrencia, se utiliza el término recurrencia o período de retorno de un evento extremo, que se define como el lapso o número de años que, en promedio, se cree que será igualado o excedido. Para el análisis de caudales, generalmente se utiliza los períodos de recurrencia de 2, 5, 10, 20, 50, y 100 años. Si el estudio asociado a los caudales para dichos períodos se ve superado en magnitud, la serie de caudales debe ser actualizada mediante nuevos estudios de frecuencia que incluyan el valor superador.

Dentro del análisis estadístico, se cuenta con herramientas que permiten llegar a los objetivos planteados para los datos obtenidos. Dentro las principales herramientas, se encuentran los análisis de frecuencia, la matriz de correlación y el análisis de componentes principales, entre otros.

4.3.1. ANÁLISIS MULTIVARIADO

El manejo de varias variables que intervienen en un determinado fenómeno conlleva una gran complejidad en su análisis, por lo que se debe adoptar un método de análisis multivariado para analizar y representar dicha información. El análisis multivariado se define como el conjunto de técnicas estadísticas que tienen como objetivo analizar e interpretar las relaciones entre distintas variables de manera simultánea, mediante la construcción de modelos estadísticos complejos que permiten distinguir la contribución independiente de cada una de ellas en el sistema de relaciones y, de este modo, describir, explicar o predecir los fenómenos que son objeto de interés para la investigación (Meneses Julio, 2019).

Un problema general de las técnicas multivariadas es el conocido como "la maldición de la dimensionalidad" (Bellman R., 1957). donde la eficiencia y la precisión en la clasificación de las variables en estudio disminuye rápidamente a medida que aumenta el número de dimensiones o variables.

El análisis multivariado, abarca este problema y pretende darle una solución asignándole mayor importancia a las variables independientes (Área, Perímetro, Precipitación, etc.) que se correlacionan de manera significativa con la variable dependiente en estudio (Caudal). Esta metodología, propone estudiar un tipo de fenómeno, utilizando las múltiples variables que están a su alcance. Es por ello, que para en una primera instancia del análisis de datos, se utilizaron 10 variables para intentar conseguir una relación con el caudal.

Esta situación implica la necesidad de adoptar un enfoque multivariado para el procesamiento y análisis, ya que, de lo contrario, sólo se realizaría la interpretación circunscripta e independiente de cada una de estas variables (Paris, 2010).

Existen diferentes procedimientos para obtener la importancia relativa de cada una de las variables consideradas en los modelos para poder realizar una caracterización de la contribución especifica al sistema de relaciones:

(A) Matriz de correlación

Existen situaciones en las que el objetivo de estudiar el comportamiento en conjunto de dos variables cuantitativas es ver si están relacionadas, en lugar de utilizar una para predecir el valor de la otra. Partiendo de esta base, se define la correlación entre variables como la cantidad de respuesta que una variable tiene con respecto a otra. Para estos casos se utiliza el coeficiente de correlación de Pearson (ρ), definido como un índice que mide el grado de covariación entre distintas variables relacionadas linealmente. En algunos casos se puede dar la posibilidad de que haya una correlación no lineal entre las variables, en dicho caso no se aprovecharía el potencial de Pearson.

La magnitud del coeficiente de Pearson oscila en valores de $-1 < \rho < 1$, valores de $1 \ o - 1$, indican una correlación perfecta, valores con rangos entre $0.9 \ a \ 0.75$ indican una correlación excelente, en cambio correlaciones menores señalan una débil correlación o selección inadecuada del método utilizado. Si toma un valor de cero, indica que no existe correlación alguna (Cohen, J., 1.988). En la Figura 4-1, se grafican las distintas calidades de correlaciones.

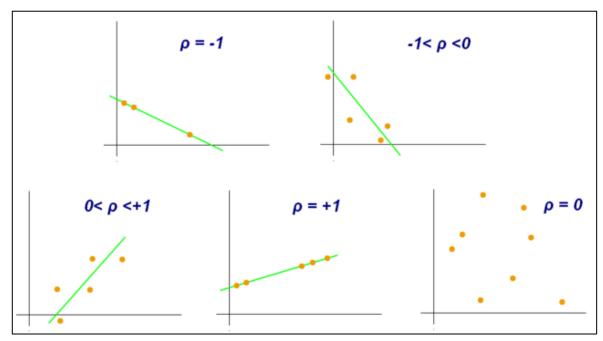


Figura 4-1 – Calidad de Correlación

Cuando la cantidad de individuos en estudio es mayor a la unidad, se construye la matriz de correlación, en la cual a cada variable le corresponde una fila y una columna, para así demostrar las relaciones existentes y analizar los resultados de una manera visual y cuantitativa.

(B) Análisis de componentes principales

En los casos en los que se pretende analizar las relaciones simultáneas existentes entre las variables (v_i) cuantitativas para poder identificar grupos de comportamiento similares, se debe aplicar el análisis de componentes principales o PCA (Hair, J. F., 2006).

Se puede definir al análisis de componentes principales como un método que tiene como objetivo reducir la complejidad de los datos realizando una reducción del tamaño de componentes que representa igualmente la variabilidad de las características de los individuos, en otras palabras, transforma un conjunto extenso de variables correlacionadas en un conjunto reducido de nuevas variables que expresen la mayor parte de la variabilidad entre los datos.

En virtud de la correcta aplicación del método se deben depurar los datos, mediante la estandarización de las variables, teniendo como resultado un conjunto de datos de magnitudes similares sin perder la variabilidad de estos.

Las componentes principales serán nuevas variables (x_i) que resultan de la combinación lineal de las variables originales (v_i) , tal que recojan la mayor cantidad de variabilidad de los datos. La intención principal del PCA es reducir la cantidad de variables en estudio de manera tal que $x_i < v_i$. Como resultado, para representar el análisis se realiza un gráfico bidimensional que muestre de manera intuitiva el resultado obtenido.

(C) Clúster jerárquico

Un clúster es un conjunto de observaciones en donde los individuos que componen dicha observación mantienen características similares que hace posible su clasificación.

La fórmula del Clúster jerárquico agrupa los datos basándose en la distancia entre cada uno y buscando que los datos que están dentro de un clúster sean los más similares entre sí. Además, el clúster permite conocer grupos que no comparten características similares, quedando excluido de los clústeres más importantes.

La forma gráfica de representar un Clúster jerárquico es mediante la utilización de Dendogramas, diagramas arbóreos o simplemente gráficos en dos dimensiones como se aprecia en la Figura 4-2.

El principal problema de una agrupación puede llegar a ser la carencia de sentido acorde a la investigación, quedando el investigador sujeto a modificaciones que, a su criterio, concuerden con el objetivo de estudio.

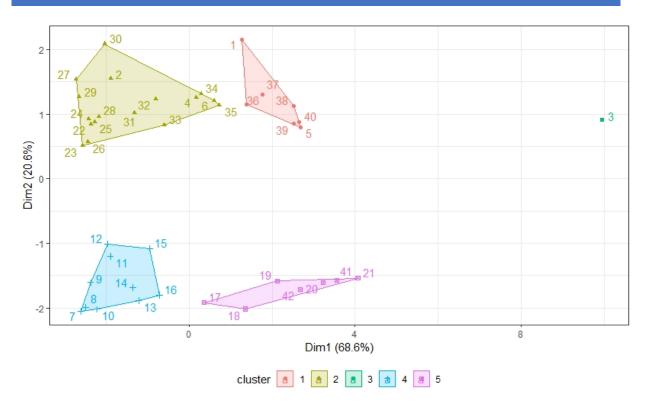


Figura 4-2 - Clúster Jerárquico y Proyección PCA

(D) Curvas de Andrews

Andrews (1972) propuso un método matemático basado en la transformación de Fourier para visualizar los resultados de análisis multidimensionales en sólo dos dimensiones. En cada observación es posible definir una función armónica en donde los coeficientes que afectan a las funciones seno y coseno, y al término constante son definidos por los valores cuantificados para las n variables. Cada punto dimensional es representado por una función tal que:

$$f_X(t) = \frac{X_1}{\sqrt{2}} + X_2 sen(t) + X_3 cos(t) + X_4 sen(2t) + X_5 cos(2t) + \cdots$$

donde X_1 , X_2 , ... X_n , son las variables cuantificadas en donde el intervalo varía entre $-\pi y \pi$.

Para aplicar la función se reescribe expresándola como una sumatoria:

$$f_x(t) = \frac{X_1}{\sqrt{2}} + \sum_{i=1}^{m_1} X_{2i} sen(it) + \sum_{i=1}^{m_2} X_{2i+1} cos(it)$$

donde:

$$m1 = \frac{n-1}{2} = m2$$
 $\rightarrow si \ n \ es \ impar$
 $m1 = \frac{n}{2}$ y $m2 = \frac{n}{2} - 1$ $\rightarrow si \ n \ es \ par$

Cada variable de cada observación es representada por una componente individual en la suma de la transformada de Fourier. Andrews, D.F. (1972). La magnitud de cada variable de un individuo afecta la frecuencia, la amplitud y la periodicidad de la función, dando una representación única para cada sujeto, pero brinda una posibilidad especial de analizar el comportamiento hidrológico en conjunto con otros individuos como se observa en la Figura 4-3.

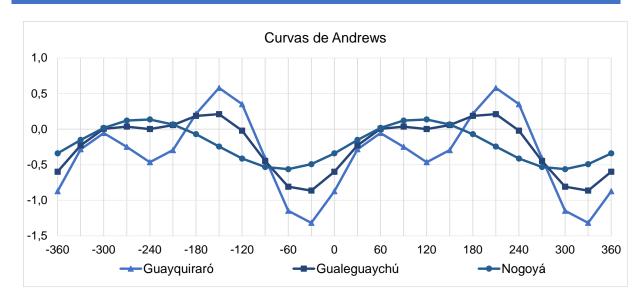


Figura 4-3 - Curva de Andrews

(E) Regresión lineal múltiple

Este método permite generar un modelo lineal en el que el valor de la variable dependiente (Y) se determina a partir de un conjunto de variables independientes llamadas predictores $(X_1, X_2, X_3...)$.

Los modelos de regresión múltiple pueden emplearse para predecir el valor de la variable dependiente o para evaluar la influencia que tienen los predictores sobre ella.

Los modelos lineales múltiples siguen la siguiente ecuación:

$$Y_i = a + b * X_{1i} + c * X_{2i} + \dots + d_n * X_{ni}$$

donde:

a: es la ordenada en el origen, el valor de la variable dependiente Y cuando todos los predictores son cero.

b, c, d: son el efecto promedio que tiene el incremento en una unidad de la variable predictora X_i sobre la variable dependiente Y, manteniéndose constante el resto de las variables. Se conocen como coeficientes parciales de regresión.

Para el análisis de regresión se utilizan las propiedades de los logaritmos para linealizar la ecuación, resultando una ecuación del siguiente tipo:

$$Ln(Q) = \ln(a) + b * \ln(X_1) + c * \ln(X_2) + d * \ln(X_3) \dots$$

4.4. SOFTWARES UTILIZADOS

El desarrollo de la investigación fue acompañado del uso de softwares libres que permitieron modelar las cuencas para obtener los parámetros hidrológicos y físicos de cada una. Además, se utilizaron softwares específicos para realizar los análisis estadísticos.

4.4.1. QGIS

El software QGIS es un Sistema de Información Geográfica (SIG) de Código Abierto licenciado bajo GNU - General Public License. En el ámbito de la ingeniería, es aplicable a múltiples propósitos que permiten al usuario, mediante la georreferenciación, analizar problemas situados en cualquier parte del mundo de interés. El QGIS se puede aplicar para la obtención de parámetros relativos a la geomorfología de las cuencas, incluyendo

parámetros relativos a su forma, su relieve y su red de drenaje, así también para la confección de imágenes para la interpretación de la información calculada.

4.4.2. AFMULTI

Este software, es un programa que posibilita el análisis de frecuencia de variables hidrológicas extremas, en base al modelo AFMULTI (FICH, 1.992, 1.998). El modelo AFMULTI fue desarrollado originalmente para el Análisis de Frecuencia de Crecidas. Permite estimar parámetros de funciones de distribución probabilística, a partir de lo cual es posible estimar eventos para distintos períodos de retorno.

De las distintas funciones de distribución y procedimientos de estimación de parámetros disponibles en la bibliografía y de acuerdo con modernos criterios existen 7 distribuciones utilizadas con mayor frecuencia, de las cuales cada una posee un método de ajuste particular. Estos procedimientos de estimación se pueden agrupar como se ilustra en la Tabla 4-1:

Tabla 4-1 - Distribución probabilística y Ajuste de Parámetros

Distribución	Método de Ajuste de Parámetros
1- Log- Normal (2p) (LN2)	Máxima Verosimilitud
2- Gumbel (GU)	Momentos Ponderados por Prob.
3- General Val. Extremos (GEV)	Momentos Ponderados por Prob.
4- Pearson III (Pill)	Máxima Verosimilitud
5- Log-Pearson III (LPIII)	Momentos Mixtos
6- Exponencial (EXP)	Momentos (método tradicional)
7- Wakeby (WA)	Momentos Ponderados por Prob.

Además de ajustar estos modelos y obtener valores para distintas recurrencias X(T), este modelo calcula los test de Bondad de Ajuste de X2 y Kolmogorov-Smimov, así como los errores cuadráticos medios de frecuencia (ECMF) y variable (ECMV) para cada una de las distribuciones.

4.4.3. RSTUDIO

El software Rstudio es un programa robusto de calculo que usa el lenguaje de codificación R, este lenguaje ofrece una gran variedad de funciones para realizar cálculos estadísticos y generar diversos gráficos a partir de los datos de entrada. Dentro de su interfaz se cargan "librerías" que contienen las herramientas a utilizar para las diversas deducciones, adicionalmente, brinda herramientas graficas para la interpretación de resultados.

5. DESARROLLO Y RESULTADOS OBTENIDOS

El trabajo se inició con la selección de las cuencas que cumplimentaban con los requisitos de calidad de datos necesarios para el estudio. Luego, se realizó el análisis de las características hidrológicas y físicas, que formaron parte de las variables del análisis estadístico multivariado.

5.1. INFORMACIÓN HIDROLÓGICA

La información hidrológica necesaria para realizar este estudio comprendió los datos de Caudal Máximo Anual y Precipitación Media Areal. El primero fue obtenido de los datos del registro del Sistema Nacional de Información Hídrica para las cuencas aforadas y de los resultados de la modelación para el resto de las subcuencas que se incorporaron al estudio; la Precipitación Media Areal se obtuvo a través del método desarrollado en los proyectos de investigación realizado en la Facultad Regional Paraná Universidad Tecnológica Nacional, denominados "Estudio de tormentas de diseño en las cuencas del arroyo Feliciano y río Gualeguaychú de la provincia de Entre Ríos" (Bonomi et al, 2017) y "Estudio de tormentas de diseño en cuencas extensas de la provincia de Entre Ríos" (López et al, 2019).

El análisis de la información hidrológica de las cuencas aforadas se realizó en base al denominado "año hidrológico", el cual, a diferencia del año calendario, se determina en función del período que cubre la temporada con las precipitaciones mayores de una cuenca. Para ello se determina como inicio de este año el mes donde se registran las menores precipitaciones o caudales. Particularmente, en este trabajo el año hidrológico se estableció su inicio el 1 de septiembre y su finalización el 31 de agosto del año siguiente.

5.1.1. CAUDAL MÁXIMO ANUAL

Los valores de caudales máximos conformaron la variable dependiente a obtener en este estudio, sirviendo además estos valores analizados para verificar los resultados de la aplicación de las fórmulas obtenidas para su estimación.

Para conformar la serie de caudales máximos se incluyeron las cuencas aforadas que contaban con con datos de aforo y datos de caudales en estaciones con 20 o más años de registros diarios de caudales.

Dentro de los registros se encontraron situaciones donde la falta de datos generaba incertidumbre sobre la calidad de los datos. Por ejemplo, había casos de información incompleta con inexistencia de registros durante los períodos de mayores precipitaciones o años con falta de 6 meses de registro o más. Debido a que era la variable primordial, los datos que conformaban la serie de caudales, debieron ser analizados y clasificados en base a criterios de aceptación previamente establecidos.

La selección de los caudales máximos se realizó comparando dos datos publicados en el Sistema Nacional de Información Hídrica: el Caudal Instantáneo Máximo (Q_{ins}) y el Caudal Máximo Medio Diario (Q_{md}). Primordialmente, se tomaba el valor del Caudal Instantáneo Máximo y se verificaba con el Caudal Máximo Medio Diario, cuando estos valores discrepaban en gran medida entre sí, o faltaba alguno de los dos para el mismo año, se elegía el que se correspondía mejor con el resto de los datos dentro de un entorno razonable.

Los valores de caudales extraídos del SNIH se presentan en el Anexo B.

Uno de los criterios para formar la serie de caudales máximos fue descartar los datos de los años que contenían seis o más meses sin medición.

En la cuenca del arroyo Nogoyá se tuvo en cuenta un criterio particular para la selección de los datos. El mismo consistió en verificar que los caudales máximos de cada año no correspondieran a niveles de altura elevados del río Paraná, debido a que este puede influir en el caudal del arroyo Nogoyá, principalmente en la zona donde se encuentra su estación de aforo sobre la Ruta Provincial N° 11. Los valores de caudal se calculan con mediciones de altura del arroyo utilizando una curva de correlación Altura-Caudal, en caso de creciente del Paraná las alturas del arroyo Nogoyá en la estación de aforo se deben principalmente a la creciente del río Paraná y no a los caudales del arroyo.

A fin de realizar este análisis, en primera instancia se investigaron los datos de medición de alturas del río Paraná brindados por la Red Hidrológica Nacional en la estación 3050 - Túnel Subfluvial, ubicada sobre el río Paraná en la provincia de Entre Ríos. Se tomó un período de 50 años de registro comprendido entre los años 1970 y 2020, en coincidencia al período de estudio de los caudales máximos del arroyo Nogoyá. Para este período se utilizaron los datos de alturas medias diarias del río Paraná, las que se ordenaron de menor a mayor, y se calculó el porcentaje de excedencia para cada registro, es decir el porcentaje de veces durante el cual una determinada altura fue igualada o superada. Al graficarla, se forma una curva en la cual la máxima altura registrada tiene una excedencia del 0% y la mínima del 100%.

Para este estudio se consideró como elevada una altura del río Paraná que podía ser igualada o superada solo un 5% del tiempo durante el período en estudio. Con estos criterios ya definidos se graficó la curva de frecuencia de alturas medias diarias del río Paraná, presentada en la Figura 5-1. Para obtener la altura media diaria correspondiente a una frecuencia de ocurrencia 5% de excedencia se entró a la curva y se obtuvo el valor de 5,09 metros.

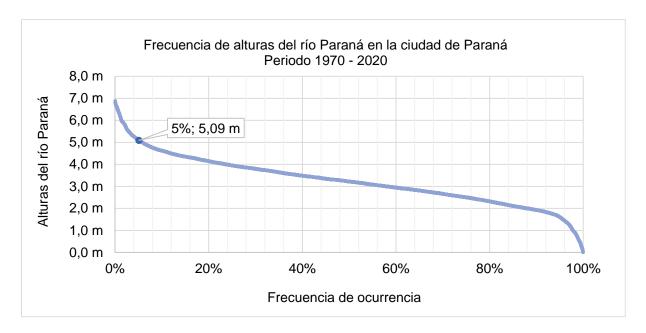


Figura 5-1 - Curva de frecuencia de alturas medias diarias río Paraná. Estación 3050 – Túnel Subfluvial

Seguidamente, se buscó aquel valor de altura del río Paraná que haya sido medido el día que se registró el caudal máximo anual que conforma los distintos valores de la serie de caudales máximos anuales del arroyo Nogoyá. De esta manera se aseguró que el valor de altura correspondiera al mismo día en que se registró el valor de caudal.

Con el valor de altura del río Paraná definido, se procedió a contrastar con la serie de caudales máximos del arroyo Nogoyá a fin de descartar aquellos valores de caudales que correspondían a días en que se excedía la altura de 5,09 metros en el río Paraná.

Para ello, se representaron estos valores mediante la gráfica de interrelación de la Figura 5-2, en base a la cual se descartaron los valores de caudal máximo de los años de registro de la cuenca del arroyo Nogoyá en los cuales la altura media del río Paraná superaba la correspondiente a un 5% de excedencia. Los valores descartados correspondieron a los años: 1991, 1996, 1997, 2006 y 2009.

Comparación de caudales máximos de arroyo Nogoyá con alturas del río

Paraná Caudales máximos del arroyo Nogoyá [m3/s] 1800 8 6,70 1600 7 1400 5,67 5,70 6 5.32 5.29 1200 Alturas del río Paraná 5 1000 4 800 3 600 2 400 200 0 Caudal Máximo Anual —— Altura del Parana —— 5% de excedencia. Altura=5.09 m

Figura 5-2 – Comparación de caudales máximos del arroyo Nogoyá con alturas del río Paraná

Las series de caudales máximos anuales se presentan en la Tabla 5-1, la cual resume los datos adoptados para cada una de las cuencas aforadas, descartando en estas series aquellos años con valores que no eran representativos de los caudales máximos o que no cumplían con los criterios adoptados.

Estación	3003	3004	3030	3037	3061	3808
Año Hidrológico	Feliciano	Gualeguay	Gualeguaychú	Nogoyá	Yuquerí Grande	Guayquiraró
1975	806,5					216,6
1976	436,0					194,4
1977	Sin datos					Sin datos
1978	875,1					198,2
1979	292,3					124,9
1980	340,9					Sin datos
1981	108,1					Sin datos
1982	326,5					507,3

Tabla 5-1 - Serie de caudales máximos anuales

Esta si é a	2002	2004	2020	2027	2004	2000
Estación	3003	3004	3030	3037	3061	3808
Año Hidrológico	Feliciano	Gualeguay	Gualeguaychú	Nogoyá	Yuquerí Grande	Guayquiraró
1983	611,0					Sin datos
1984	481,7			75,7		182,6
1985	845,5			25,4		277,5
1986	376,7			100,0		130,2
1987	1.934,4		Sin datos	19,9		512,8
1988	446,7		316,1	10,6		134,4
1989	721,5		265,8	256,3		299,1
1990	331,6		205,2	369,0		201,4
1991	716,9		51,5	Sin datos	Sin datos	361,3
1992	557,1	539,7	391,2	93,4	Sin datos	Sin datos
1993	641,0	745,9	301,2	731,7	157,7	300,4
1994	223,5	226,0	86,5	72,5	49,6	262,9
1995	925,3	338,0	176,2	98,7	91,5	185,1
1996	131,2	69,1	6,8	Sin datos	107,9	79,0
1997	2.248,4	744,5	376,3	Sin datos	275,2	364,8
1998	520,6	539,7	427,0	115,9	160,3	116,9
1999	245,4	680,7	630,9	1.080,2	101,6	198,1
2000	665,2	592,9	319,2	708,0	69,3	293,7
2001	735,8	930,5	319,2	201,5	115,6	302,4
2002	2.254,1	2.106,7	585,2	157,4	107,0	314,7
2003	195,7	819,4	150,4	242,1	65,0	104,1
2004	2.373,9	2.049,7	536,1	194,2	160,8	208,4
2005	660,1	307,1	144,0	172,0	10,9	250,1
2006	671,0	2.590,7	316,8	Sin datos	96,6	190,3
2007	166,9	346,6	272,3	91,4	23,8	205,0
2008	367,9	303,6	154,4	236,8	129,5	Sin datos
2009	1.575,9	2.310,7	449,9	Sin datos	238,6	291,3
2010	Sin datos	329,3	63,3	144,5	11,7	35,7
2011	665,3	504,5	240,0	200,7	Sin datos	236,0
2012	851,8	2.707,0	240,0	572,6	254,2	Sin datos
2013	798,0	393,8	127,3	360,8	47,2	Sin datos
2014	745,5	843,4	287,4	471,1	Sin datos	Sin datos
2015	2.243,6	Sin datos	Sin datos	Sin datos	Sin datos	Sin datos
2016	458,9	769,2	253,5	1.524,9	Sin datos	Sin datos
2017	1.529,9	1.610,6	377,0	122,8	Sin datos	Sin datos

Estación	3003	3004	3030	3037	3061	3808
Año Hidrológico	Feliciano	Gualeguay	Gualeguaychú	Nogoyá	Yuquerí Grande	Guayquiraró
2018	Sin datos	1.599,3	461,1	489,8	Sin datos	Sin datos
2019	Sin datos	562,6	182,4	81,4	Sin datos	Sin datos

Definida la serie de caudales máximos anuales, se procedió a realizar un análisis de ajustes de funciones de distribución de frecuencias con el software AfMulti, el cual permite estimar los valores de la variable de acuerdo a las distintas funciones de distribución de frecuencias para distintas recurrencias.

Para el uso de este software en particular de debió trabajar las series de caudales máximos anuales con números enteros sin decimales, ingresando los valores de cada estación multiplicados por 100. Esto se debe a que el software no reconoce los decimales.

En los casos que no se contaba con registros de caudal se descartaba el año completo y se continuaba cargando la serie con los datos de los años siguientes. Es por lo que, en la Figura 5-3, se observa a modo de ejemplo, que el año 1977 no se representa.

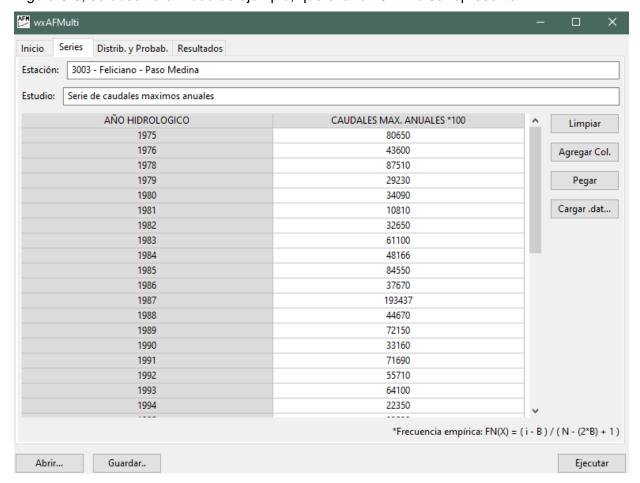


Figura 5-3 - Interfaz AfMulti

Una vez cargados los valores de caudales, se debieron ingresar las probabilidades de ocurrencia utilizadas en este estudio, sabiendo que:

$$Probabilidad\ de\ ocurrencia\ (Pr) = \frac{1}{Recurrencia\ (TR)}$$

En este caso se trabajó con probabilidades de 0,5 - 0,2 - 0,1 - 0,05 - 0,02 y 0,01, que corresponden a recurrencias de 2, 5, 10, 20, 50 y 100 años. Se utilizaron estas recurrencias debido a que son las adoptadas frecuentemente en el diseño y verificación de obras hidráulicas.

Como se mencionó anteriormente, el programa trabaja con 7 distribuciones de frecuencia con un método de ajuste particular para cada una. En virtud de llevar a cabo el estudio, se utilizaron las distribuciones de Log – Gauss, Gumbel, GEV, Pearson y Exponencial como se muestra en la Figura 5-4.

Una vez seleccionadas las funciones de distribución, se procedió al cálculo de la variable para las distintas recurrencias.

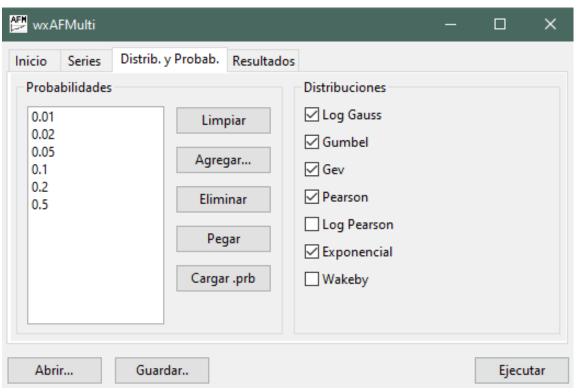


Figura 5-4 - Selección de probabilidades y frecuencias de ajuste

Para cada cuenca se obtuvieron los valores de caudal máximo para las probabilidades correspondientes a las recurrencias mencionadas y la bondad de ajuste. El software devuelve resultados numéricos y gráficos donde se observan las aproximaciones de las funciones para la variable estudiada y la bondad de ajuste según el cálculo de errores que realiza.

Partiendo de adoptar aquellos ajustes estadísticos de menor error, se unificó el criterio optando por la función de GEV ya que ajustaba con errores pequeños para todas las cuencas. Para la cuenca del Feliciano, se adoptó particularmente la función de Pearson porque fue la seleccionada en el proyecto realizado anteriormente que estudió dicha cuenca.

En la Figura 5-5 se presenta a modo de ejemplo, un gráfico de distribución de ajuste visual, para las distribuciones de Gumbel, GEV y Pearson.

ESTUDIO ESTADISTICO DE: Serie de caudales maximos anuales ESTACION: 3003 - Feliciano - Paso Medina - SERIE: Q

Figura 5-5 – Frecuencia experimental y Frecuencias de ajuste

Para representar el error cuadrático medio y variable de cada función, el software devuelve un gráfico de barras como el que se presenta en la Figura 5-6 para la cuenca del arroyo Nogoyá. Se observa que particularmente en este caso la función que tiene menor error es la de GEV.

ESTUDIO ESTADISTICO DE:

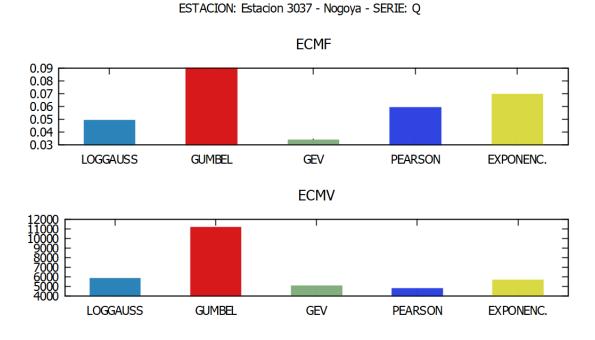


Figura 5-6 - Grafica errores cuadráticos medios de frecuencia ECMF y variable ECMV

Luego, el software devuelve los valores buscados según las probabilidades y funciones adoptadas para el análisis, para este estudio, la variable buscada era el caudal máximo para las probabilidades ya mencionadas.

En la Tabla 5-2 se presentan los valores obtenidos con el AfMulti de caudales máximos de la cuenca del Nogoyá para las distintas probabilidades de ocurrencia y funciones de distribución. En gris se resaltaron los valores para la función GEV, los cuales fueron utilizados finalmente en este estudio para dicha cuenca.

Tabla 5-2 - Caudales para distintas probabilidades. Arroyo Nogoyá – Estación 3037 – RP N° 11

PROBABILIDAD	CAUDAL									
TROBABILIDAD	LOGGAUSS	GUMBEL	GEV	PEARSON	EXPONENC.					
0,01	1.640,2	1.242,0	1.936,3	1.558,1	1.522,4					
0,02	1.281,4	1.078,6	1.407,0	1.308,2	1.287,5					
0,05	884,9	860,6	900,5	980,5	977,0					
0,10	636,9	692,2	622,6	735,5	742,1					
0,20	427,6	516,6	408,5	494,5	507,2					
0,50	199,6	251,4	187,9	188,5	196,7					

En el Anexo C, se presenta la salida completa del software con los resultados de caudales máximos para las distintas probabilidades y los gráficos de distribución de frecuencias incluyendo las frecuencias experimentales obtenidos para cada cuenca.

En la Tabla 5-3 se presenta un resumen con los valores de caudales máximos para cada cuenca según la función adoptada.

Tabla 5-3 - Resumen caudales máximos software AfMulti

Cuenca	Α	TR	Q	Función		
	km²	Años	m³ / s	adoptada		
		2	220			
Cuavavirari		5	319			
	3.074	10	381	GEV		
Guayquiraró	3.074	20	438	GEV		
		50	509			
		100	559			
		2	100			
	677	5	170			
Yuquerí		10	217	GEV		
Grande		20	263			
		50	324			
		100	370			
		2	716			
		5	1.342			
Cualoguay	16.038	10	1.871	GEV		
Gualeguay	10.036	20	2.486	GEV		
		50	3.472			
		100	4.384			
		2	265			
Gualoguayeké	2.029	5	408	GEV/		
Gualeguaychú	2.029	10	493	GEV		
		20	568			

Cuenca	Α	TR	Q	Función	
	km²	Años	m^3/s	adoptada	
		50	656		
		100	717		
		2	601		
		5	1.182		
Feliciano	5.573	10	1.610	Pearson	
reliciano		20	2.033		
		50	2.585		
		100	3.005		
		2	188		
		5	408		
Nogová	3.873	10	623	GEV	
Nogoyá	3.073	20	901	GEV	
		50	1.407		
		100	1.936		

Los valores de caudales máximos de las subcuencas del arroyo Feliciano y río Gualeguaychú se obtuvieron de la modelación de cada una en el software HEC-HMS, para lo cual se ingresaron los valores de precipitación correspondientes a cada recurrencia. Estos valores de caudales máximos se tomaron de los proyectos mencionados y se presentan en el Anexo D.

5.1.2. PRECIPITACIÓN MEDIA AREAL

Es la precipitación sobre toda la superficie de la cuenca, que está promediada en el tiempo, por ejemplo, una serie de años, o una serie de valores del mismo mes.

El cálculo de la Precipitación Media Areal se realizó usando las curvas Intensidad Duración Recurrencia (IDF) realizadas en los Proyectos "Estudio de tormentas de diseño en las cuencas del arroyo Feliciano y río Gualeguaychú de la provincia de Entre Ríos" (Bonomi et al, 2017) y "Estudio de tormentas de diseño en cuencas extensas de la provincia de Entre Ríos" (López et al, 2019).

En primera instancia, se calculó el tiempo de concentración de la zona en estudio para de esta manera obtener la duración de la tormenta, la cual se obtuvo aplicando una duración de tormenta de dos a tres veces el tiempo de concentración, según la siguiente relación:

$$d = 2 a 3 veces T_c$$

Siendo Tc el tiempo de concentración calculado según la fórmula de Illinois mencionada en el marco teórico.

Luego de realizado este cálculo, se siguió la premisa de adoptar valores enteros en la unidad de tiempo (días), ya que las curvas IDF mencionadas contemplan duraciones de tormenta de 1, 2, 4, 6, 8, 10 y 12 días.

Debido a que para la construcción de las curvas IDF mencionadas, se adoptaron distintos puntos de cierre de las distintas cuencas, se debió seleccionar previamente la curva utilizada en cada caso. Esta selección se realizaba en función del área de la cuenca en estudio, por lo que se eligió la curva cuya área era la más cercana, inmediata superior o inferior, al valor promedio de área de las cuencas en estudio.

Una vez calculado el valor de la intensidad de la tormenta para el período de retorno deseado, se obtuvo la Precipitación Media Areal multiplicando la intensidad por la duración de la tormenta adoptada mediante la siguiente ecuación:

$$PMA = I\left[\frac{mm}{hs}\right] x d [h]$$

Siendo I la intensidad de la tormenta y d la duración de tormenta adoptada.

La Precipitación Media Areal se afectó por un coeficiente de ajuste debido a que difiere del máximo local. "La evaluación habitual de la PMA consiste en la predicción local de la lámina precipitada de una estación núcleo, asumida como foco del evento y su atenuación con un ábaco en función del área de aporte y de la duración de lluvia.". (Bonomi, Collante Wojcicki, Gimenez, Margheim, 2017)

En los proyectos mencionados, se calcularon ecuaciones a fin de obtener los valores de Coeficiente de Abatimiento Areal (CAA) correspondientes a las características de las cuencas, teniendo en cuenta la duración de la tormenta.

El cálculo del Coeficiente de Abatimiento Areal Estación de Referencia (CAA ER) se realizó en función del área de la cuenca de la estación de referencia.

En cambio, el Coeficiente de Abatimiento Areal Estación de la cuenca estudiada (CAA 01), se calculó en función del área de la cuenca cuya PMA se quería calcular.

Finalmente, habiendo determinado tanto la Precipitación Media Areal, como ambos Coeficientes de Abatimiento Areal, se calculó la Precipitación Media Areal de la cuenca en estudio mediante la siguiente expresión:

$$PMA(01) = PMA(ER) x \frac{CAA(01)}{CAA(ER)}$$

A modo de ejemplo, se presenta la Tabla 5-4, en donde se muestra para una recurrencia de 2 años los coeficientes de intensidad de precipitación en función de las distintas duraciones de tormenta, utilizados para calcular la Precipitación Media Areal en el caso de unas de las subcuencas del arroyo Feliciano a partir de los datos de la IDF de la cuenca aforada del arroyo Feliciano en Paso Medina.

Tabla 5-4 - Cálculo de PMA

	DATOS EXTRAÍDOS DE PID 3882			E:	STACIO	ÓN DE	NCIA	CUENCA		
DAT				RUT	RUTA PROVINCIAL N°6 A:5538Km²					A:5573Km ²
R	Duración		ENTES EC.: //xln(A)+N	COEFICIENTES IDF PMA(E		PMA(ER)	CAA(ER)	PMA(O1)	CAA(O1)	
años	días	M	N	Α	В	С	mm		mm	
2	1	-0,04	1,15	592,60	1,55	0,69	94,05	0,84	94,02	0,84
2	2	-0,01	1,06	592,60	1,55	0,69	116,64	0,94	116,63	0,94
2	4	-0,01	1,04	592,60	1,55	0,69	144,63	0,96	144,62	0,96
2	6	-0,09	1,04	592,60	1,55	0,69	164,01	0,26	163,65	0,26
2	8	-0,08	1,03	592,60	1,55	0,69	179,32	0,34	179,06	0,34
2	10	-0,09	1,04	592,60	1,55	0,69	192,16	0,26	191,74	0,26
2	12	-0,07	1,03	592,60	1,55	0,69	203,34	0,42	203,13	0,42

Se verificó el cálculo del PMA realizando la relación entre CAA(01) y CAA(ER), siendo el resultado menor a la unidad cuando el área de la estación de referencia era menor que el área de la estación estudiada. Por el contrario, la relación entre los coeficientes daba un valor mayor a la unidad cuando el área de la estación de referencia era mayor que el área de la estación estudiada.

Las curvas IDF de la Figura 5-7 se utilizaron para obtener la intensidad de tormenta de la subcuenca del arroyo Feliciano con cierre en Paso Medina para distintas recurrencias, y fueron calculadas en el proyecto "Estudio de tormentas de diseño en cuencas extensas de la provincia de Entre Ríos" (López et al, 2019).

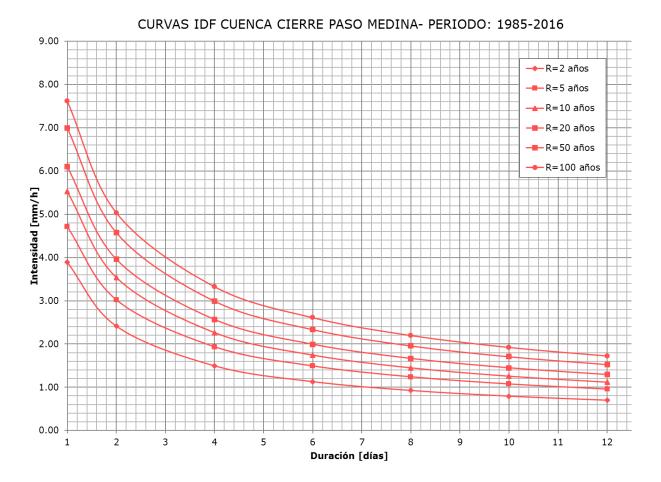


Figura 5-7 – Curvas IDF subcuenca arroyo Feliciano Cierre Paso Medina

El Coeficiente de Abatimiento Areal para el ejemplo de la subcuenca del arroyo Feliciano se calculó según la expresión "CDA(2d)" extraída de las Curvas de decaimiento areal del proyecto "Estudio de tormentas de diseño en las cuencas del arroyo Feliciano y río Gualeguaychú de la provincia de Entre Ríos" (Bonomi et al, 2017), presentada en la Figura 5-8.

En el Anexo E se presentan los valores de PMA de las cuencas aforadas y subcuencas para las distintas recurrencias y las duraciones de tormentas adoptadas en cada caso para el estudio.

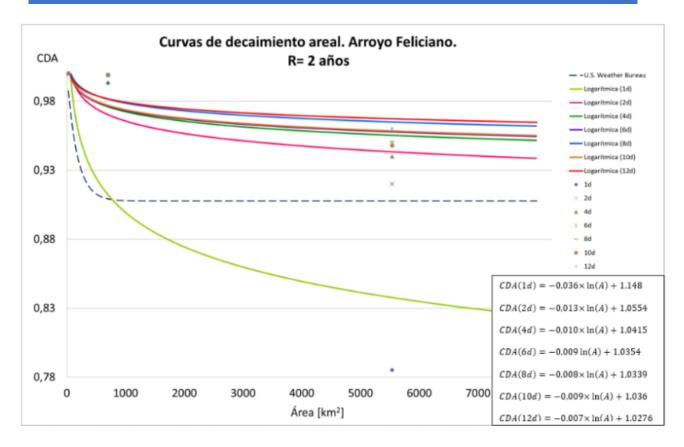


Figura 5-8 - Curvas de decaimiento o abatimiento areal. Arroyo Feliciano

5.2. CARACTERÍSTICAS FÍSICAS

Las características físicas de las cuencas conformaron, junto con las precipitaciones, las variables independientes de este estudio y por lo tanto se mantuvieron constante para todos los análisis que se realizaron.

Las variables correspondientes a las características utilizadas en este estudio se presentan en la Tabla 5-5.

Variable	Descripción	Unidad
Α	Área de la cuenca	km ²
R	Coeficiente de almacenamiento	h
Kc	Coeficiente de compacidad	-
Lambda	Coeficiente Lambda	-
Lc	Longitud del curso principal	km ²
i	Pendiente media del curso principal	m/m
Р	Perímetro	km
Тс	Tiempo de Concentración	h

Tabla 5-5 - Características físicas generales

Para calcular los límites físicos de las cuencas aforadas en estudio se utilizó el software QGIS. En este proceso se utilizaron Datos Digitales de Elevación del terreno (MDE) brindados por el Instituto Geográfico Nacional (IGN), para poder representar la topografía de Entre Ríos y mediante QGIS se realizó la delimitación de las distintas cuencas.

Se modeló cada cuenca aforada en el software obteniendo sus delimitaciones, topografía y red de drenaje. Luego, se procedió a obtener con la herramienta "Calculadora de campos", el área y perímetro de cada una.

La longitud del curso principal correspondiente a cada cuenca aforada se obtuvo también con el QGIS. Se identificó cada tramo componente de la red de drenaje asignándoles el tipo de cauce Principal o Secundario según correspondiera. Finalmente, se sumaron las longitudes de los cauces que pertenecían al curso Principal y se obtuvo la longitud del curso principal.

La pendiente media del curso principal se calculó con el cociente entre el desnivel y la longitud del curso principal utilizando el QGIS. Para ello, cargados los MDE de cada cuenca se utilizaron herramientas del software que permiten obtener las cotas en el punto de inicio y salida del curso. Luego se calculó la diferencia de cotas para obtener el desnivel y finalmente se realizó el cociente entre este valor y la longitud del curso obteniendo la pendiente media del curso principal.

Las demás características de las cuencas aforadas se calcularon con las fórmulas expresadas anteriormente en el Marco Teórico: Coeficiente de Compacidad (Kc), Coeficiente Lambda, Coeficiente de Almacenamiento (R) y Tiempo de Concentración (Tc).

Los parámetros físicos obtenidos para cada cuenca se resumen la Tabla 5-6:

Cuonos	Α	Р	Kc	Lc	i	Тс	R	Lamda
Cuenca	km²	km	-	km	m/m	h	h	-
Guayquiraró	3.074	557,6	2,8	129,5	0,00036	63,6	43,9	0,4
Yuquerí Grande	677	214,4	2,3	50,7	0,00117	22,6	12,6	0,4
Gualeguay	16.038	1.350,4	3,0	495,7	0,00009	266,2	213,2	0,4
Gualeguaychú	2.029	420,0	2,6	113,5	0,00042	55,2	37,3	0,4
Feliciano	5.573	732,0	2,7	151,5	0,00024	78,4	63,4	0,4
Nogová	3.873	523.5	2,4	137,0	0.00052	62,6	33,6	0.3

Tabla 5-6 - Parámetros físicos de las cuencas aforadas

La información hidrológica y física de las subcuencas pertenecientes a las cuencas del Feliciano y Gualeguaychú se extrajeron de los Proyectos Finales mencionados. En las Tablas 5-7 y 5-8 se presentan en resumen los valores de los parámetros físicos para cada subcuenca.

Tabla 5-7 - Parámetros físicos de las subcuencas (Cuenca Feliciano)

Cuenca	Α	Р	Kc	Lc	i	Тс	R	Lamda
	km ²	km		km	m/m	h	h	
F_C18_2_Arroyo Tases	80	47,2	1,5	23,2	0,00058	13	17	1,0
F_C12_1_Arroyo Estacas Este	216	67,8	1,3	31,7	0,00069	16	16	1,0
F_C15-1_Arroyo Tuna	228	71,5	1,3	28,7	0,00058	16	18	1,0
F_2_Junction_9	616	122,3	1,4	49,0	0,00065	22	20	0,9
F_3_Junction_2	1.095	155,6	1,3	56,9	0,00040	30	31	1,0
F_3_Junction_7	740	125,4	1,3	63,3	0,00044	32	29	0,9
F_4_Junction_16	753	164,8	1,7	77,6	0,00048	36	30	0,8
F_4_Junction_4	1.444	178,6	1,3	76,0	0,00038	39	35	0,9

Cuenca	Α	Р	Kc	Lc	i	Тс	R	Lamda
	km²	km		km	m/m	h	h	
F_5_Junction_7	2.437	244,6	1,4	102,3	0,00026	51	44	0,9
F_7_Junction_10	3.521	317,8	1,5	150,5	0,00022	74	69	0,9
F_10_Junction_13	4.620	375,3	1,6	190,6	0,00022	90	65	0,7
F_13_Junction_17	6.848	464,8	1,6	228,9	0,00024	108	75	0,7
F_15_Junction_22	8.210	523,6	1,6	268,5	0,00024	122	79	0,6
F_14_Junction_21	7.145	479,2	1,6	251,3	0,00024	118	79	0,7
F_12_Paso_Medina	5.555	401,9	1,5	210,4	0,00021	100	70	0,7

Tabla 5-8 - Parámetros físicos de las subcuencas (Cuenca Gualeguaychú)

Cuenca	Α	Р	Kc	Lc	i	Tc	R	Lamda
	km ²	km		km	m/m	h	h	
G_CP01W92	168	104,4	2,3	26,0	0,00117	13	22	0,6
G_CP02W141	169	90,4	2,0	22,7	0,00092	12	19	0,6
G_CP03W150	265	128,2	2,2	28,0	0,00101	14	21	0,6
G_CP09W530	322	132,7	2,1	39,3	0,00096	19	23	0,5
G_CP14W860	370	121,3	1,8	31,2	0,00104	14	15	0,5
G_CP12W680	396	140,8	2,0	43,5	0,00160	20	13	0,4
G_CP14W950	703	169,3	1,8	44,6	0,00101	20	11	0,4
G_CP16W1050	271	112,9	1,9	33,9	0,00125	15	9	0,4
G_CP05W90	532	218,1	2,7	60,1	0,00154	30	23	0,4
G_CP08W450	907	239,4	2,2	64,7	0,00063	31	22	0,4
G_CP10W580	1.302	313,9	2,5	79,1	0,00059	38	25	0,4
G_CP06W331	1.686	321,3	2,2	86,6	0,00049	42	31	0,4
G_CP07W440	2.280	443,9	2,6	124,3	0,00043	59	38	0,4
G_CP10W600	3.673	522,1	2,4	135,4	0,00044	64	39	0,4
G_CP11W740	4.762	607,6	2,5	154,5	0,00039	73	44	0,4
G_CP13W870	5.094	657,7	2,6	176,3	0,00039	82	47	0,4
G_CP15W1000	6.971	740,4	2,5	195,9	0,00037	91	50	0,4
G_CP15W1040	6.385	709,8	2,5	184,1	0,00000	86	48	0,4
G_CP15W1030	6.661	726,9	2,5	191,1	0,00000	89	49	0,4

En el Anexo F se presentan todas las variables y parámetros de las cuencas aforadas y subcuencas para las recurrencias adoptadas.

5.3. ANÁLISIS MULTIVARIADO DE LAS VARIABLES

Reunida la información de cada cuenca y subcuenca utilizada en este estudio se procedió a realizar inicialmente un análisis multivariado de las variables para la recurrencia de 2 años. Al comparar los valores de caudal calculados con las ecuaciones obtenidas mediante regresión lineal con los valores de caudales de entradas existían errores que superaban ampliamente el máximo de 20% propuesto para considerar valido el estudio.

Se eliminaron las subcuencas que tenían errores grandes y se volvieron a obtener las ecuaciones para estimar caudales obteniendo menores errores. Pero al intentar obtener el índice de creciente para calcular los caudales máximos para las demás recurrencias, se obtuvieron errores muy superiores al límite mencionado.

Los métodos aplicados son probabilísticos y requieren la mayor cantidad de información posible para obtener resultados verídicos, debido que para la recurrencia de 2 años se debieron descartar muchas subcuencas que no verificaban se redujo la información de entrada.

Por lo tanto, se procedió a comenzar de nuevo con el análisis multivariado utilizando los valores de variables para la recurrencia de 5 años. Para esta recurrencia se obtuvieron menores diferencias entre los valores de caudales de partida con los estimados con las ecuaciones obtenidas con la regresión lineal.

Para las demás recurrencias se obtuvieron las ecuaciones para estimar caudales máximos con el método de regresión lineal utilizando los análisis multivariados obtenidos para la recurrencia de 5 años. A continuación, se describe el procedimiento realizado para obtener las ecuaciones de estimación de caudal máximo para la recurrencia de 5 años.

En primera instancia se evaluó la interdependencia entre todas las variables, aunque el objetivo principal era conocer cuales se correlacionaban mejor con el caudal máximo, es decir cuales influían mayormente en la variabilidad de éste.

Para realizar este análisis se trabajó con el software Rstudio, aplicando distintos métodos de análisis estadístico. Se debieron estandarizar los valores de las variables ya que entre ellas tenían grandes diferencias en ordenes de magnitud, por ejemplo, el área o longitud del cauce con cifras de varios miles y variables como la pendiente cuya primera cifra distinta a cero era la quinta o sexta decimal. Para ello, con el Rstudio se obtuvieron los valores de las variables estandarizadas que se utilizaron en el análisis multivariado aplicando la siguiente fórmula:

$$x_{std} = \frac{x_i - x_m}{\sigma}$$

donde:

x_{std}: es el valor de la variable estandarizado,

x_i: es el valor de la variable,

x_m: es la media de la muestra,

σ: es la desviación estándar de la muestra.

Se ingresaron al software los valores estandarizados de las variables del estudio, descriptas en los puntos anteriores, para las cuencas aforadas y las subcuencas y se continuó con el análisis multivariado de éstas.

El primer método utilizado fue el de la matriz de correlación (Figura 5-9) el cual devuelve una matriz con valores entre 0 y 1, indicando un valor 0 que no hay ninguna correlación y el valor de 1 una excelente correlación.

Se tomó como referencia que los valores superiores al valor absoluto 0,70 indicaban las mejores correlaciones. En función de ello, de la matriz obtenida con el método, las variables que mejor correlacionaron con el caudal máximo fueron: el área (A), la longitud del cauce (Lc), la pendiente (i), el tiempo de concentración (Tc), el coeficiente de almacenamiento (R) y la Precipitación Media Areal (PMA).

A su vez, se observó que existía una buena interrelación entre las variables ya que un valor mayor a 0,5 significa un efecto grande entre variables (Cohen, 1988).

	Q ^{5años}	Α	Р	Kc	Lc	i	Тс	R	Lamda	PMA
	1,00	0,84	0,66	0,01	0,85	-0,71	0,81	0,74	-0,12	0,88
Α		1,00	0,92	0,35	0,99	-0,65	0,98	0,92	-0,31	0,82
Р			1,00	0,65	0,89	-0,60	0,89	0,81	-0,52	0,65
Kc				1,00	0,33	0,00	0,34	0,26	-0,80	-0,01
Lc					1,00	-0,65	1,00	0,95	-0,29	0,85
i						1,00	-0,64	0,58	-0,12	-0,76
Тс							1,00	0,97	-0,27	0,84
R								1,00	-0,13	0,83
Lamda									1,00	0,09
PMA										1,00

Figura 5-9 - Diagrama de correlación de variables

El análisis estadístico, se complementó con la aplicación del Método de Componentes Principales para obtener gráficamente la dependencia entre las variables y poder comparar con los resultados obtenidos anteriormente.

Este método grafica las variables en un par de ejes "X" e "Y" en forma de vectores (Figura 5-10) según una magnitud y una dirección, de esta manera se puede observar la interrelación entre las variables según coincidan o no en magnitud y dirección los vectores de cada variable independiente respecto del vector de la variable dependiente.

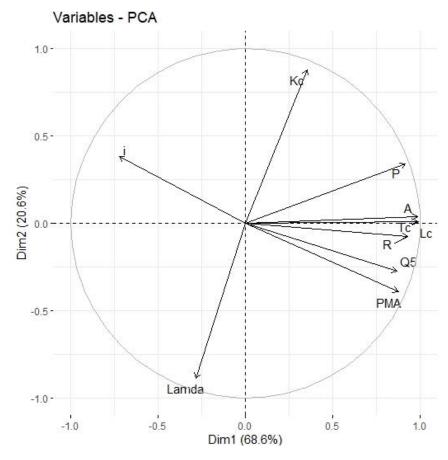


Figura 5-10 - Gráfica Método de Componentes Principales

En la Figura 5-10 puede observarse que las variables que se relacionan entre sí se grafican como vectores que tienen prácticamente la misma dirección y magnitud o longitud.

Las variables que según este método correlacionan mejor con el caudal máximo son: la PMA, el área (A), el perímetro (P), la longitud del cauce (Lc), el tiempo de concentración (Tc) y el coeficiente de almacenamiento (R). Estos resultados se asemejan al obtenido con el método de correlación.

El tercer método de análisis utilizado para observar la relación de las variables fue el de determinación de Clúster, a través del cual se agrupan y luego se grafica en un Dendograma (Figura 5-11) en función de la interdependencia que existe entre ellas.

En la Figura 5-11 se puede observar que el caudal máximo (Q5) se relaciona en mayor medida con la PMA, en un nivel inferior con el perímetro (P), el coeficiente de almacenamiento (R), el área (A), la longitud del cauce (Lc) y el tiempo de concentración (Tc). En menor medida se correlaciona con el coeficiente Lambda, la pendiente y el coeficiente de compacidad. El resultado es similar al que se obtuvo en los dos análisis anteriores.

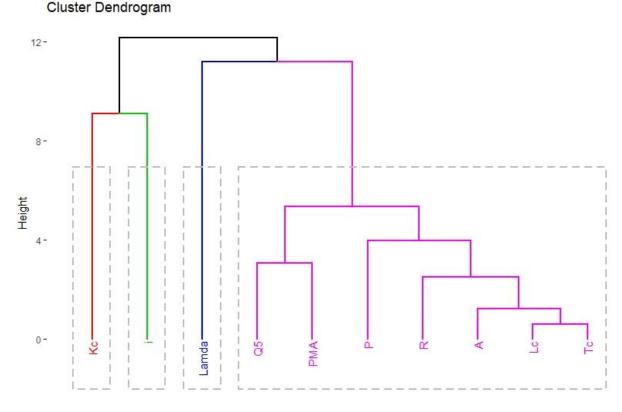


Figura 5-11 - Dendograma de variables

A partir de los resultados obtenidos de los tres análisis realizados, se seleccionaron las variables que mejor correlacionaron con el caudal máximo teniendo en cuenta principalmente los coeficientes de correlación de la matriz homónima del caudal máximo con las demás variables.

Bajo el concepto de adoptar para las fórmulas de correlación aquellas variables que se obtengan de forma directa, se seleccionaron tres variables que mostraban una buena correlación con el caudal máximo y fueran de fácil determinación, además, coincidentes con las seleccionadas en los proyectos anteriores.

Las variables seleccionadas ordenadas en función de su mayor correlación con el caudal máximo son las siguientes:

- Precipitación Media Areal
- Área
- Pendiente media del curso principal

Con estas tres variables y los valores de caudal máximo para 5 años de recurrencia se procedió a realizar el agrupamiento de las cuencas y subcuencas en función de sus características que definen regiones hidrológicamente homogéneas.

En la Tabla 5-9 se resumen los datos de las variables seleccionadas para definir las cuencas hidrológicamente homogéneas.

Tabla 5-9 - Datos de las cuencas y subcuencas para la regionalización

Cuenca	Q ^{5años}	А	i	PMA ^{5años}
	m³/s	km²	m/m	mm
Gualeguay	1.342	16.038	0,00009	318
F_13_Junction_17	1.573	6.848	0,00024	273
F_15_Junction_22	1.990	8.210	0,00024	271
F_14_Junction_21	1.653	7.145	0,00024	273
F_12_Paso_Medina	1.332	5.555	0,00021	275
G_CP12W680	121	396	0,00101	138
G_CP03W150	79	265	0,00096	133
G_CP02W141	50	170	0,00101	133
G_CP09W530	89	322	0,00104	144
G_CP14W860	153	370	0,00160	133
G_CP14W950	243	703	0,00125	138
G_CP16W1050	90	271	0,00154	126
Yuquerí Grande	170	677	0,00117	166
G_CP01W92	40	168	0,00092	133
Gualeguaychú	408	2.029	0,00042	183
G_CP07W440	386	2.281	0,00043	183
G_CP10W580	307	1.302	0,00059	166
G_CP06W331	338	1.687	0,00049	166
G_CP08W450	222	907	0,00063	153
F_2_Junction_9	346	616	0,00065	177
F_C12_1_Arroyo Estacas Este	163	216	0,00069	171
F_C18_2_Arroyo Tases	67	80	0,00058	171
F_C15-1_Arroyo Tuna	173	228	0,00058	184
G_CP11W740	743	4.763	0,00039	193
G_CP13W870	761	5.096	0,00039	198
Nogoyá	408	3.873	0,00052	194
G_CP10W600	618	3.674	0,00044	180
Guayquiraró	319	3.074	0,00036	224
F_4_Junction_4	511	1.444	0,00038	213
F_4_Junction_16	329	753	0,00048	213
F_3_Junction_2	421	1.095	0,00040	196
F_3_Junction_7	288	740	0,00044	196
G_CP15W1000	1.048	6.974	0,00037	206

Cuenca	Q ^{5años}	Α	i	PMA ^{5años}
	m³/s	km²	m/m	mm
G_CP15W1040	993	6.388	0,00038	206
G_CP15W1030	1.011	6.664	0,00037	206
F_5_Junction_7	945	2.437	0,00026	238
F_7_Junction_10	1.060	3.521	0,00022	242
Feliciano	1.182	5.573	0,00024	244
F_10_Junction_13	1.216	4.620	0,00022	259

5.4. AGRUPAMIENTO DE CUENCAS HIDROLÓGICAMENTE HOMOGÉNEAS

Las cuencas y subcuencas se agruparon en regiones homogéneas mediante un análisis de Clúster de las variables y se contrastaron los resultados obtenidos, con los gráficos de las Curvas de Andrews.

Con el análisis de Clúster se obtuvo el gráfico presentado en la Figura 5-12, en el cual a través de la representación en un Dendograma se observó la formación de cinco grupos de cuencas y subcuencas que presentaban características hidrológicamente homogéneas.

Posteriormente, a modo de verificación de los resultados obtenidos con el análisis de Clúster se calcularon y graficaron las Curvas de Andrews en función de la agrupación ilustrada en los Dendogramas (Figura 5-12). En estas curvas se observó que efectivamente existía un patrón entre las cuencas pertenecientes a cada grupo en cuanto a amplitud, período y forma en general.

A cada grupo se le aplicó el método de regresión lineal para obtener las ecuaciones de estimación de caudal máximo. Este método requiere que la cantidad de individuos sean igual a la cantidad de variables más 1.

En este estudio, las variables eran cuatro: el caudal máximo, la PMA, el área y la pendiente, y los individuos se conformaban con las cuencas y subcuencas, por lo tanto, fue necesario que cada grupo esté integrado por al menos 5 cuencas y subcuencas. Es por ello, que se procedió a reagrupar algunos grupos en función del área de las cuencas y subcuencas para poder aplicar el método.

La cuenca del Gualeguay tenía el área más grande, por ello se agrupó con el grupo de subcuencas de áreas mayores conformado por F_15_Junction_22, F_13_Junction_17, F_14_Juncion_21. Además, se sumó a este grupo la subcuenca del Feliciano con cierre en Paso Medina, denominada F_12_Paso_Medina ya que era la de mayor área y era necesaria incorporarla al grupo para aplicar el método de regresión lineal.

El grupo más grande que contenía a las cuencas aforadas del río Gualeguaychú, el arroyo Nogoyá y el río Guayquiraró junto a subcuencas del arroyo Feliciano y el río Gualeguaychú se dividió en dos grupos debido a que en el gráfico de Curvas de Andrews se observaba disparidad entre las curvas, como se puede ver en la Figura 5-13.

La separación en los dos grupos se realizó en función del área y la pendiente de las cuencas y subcuencas.

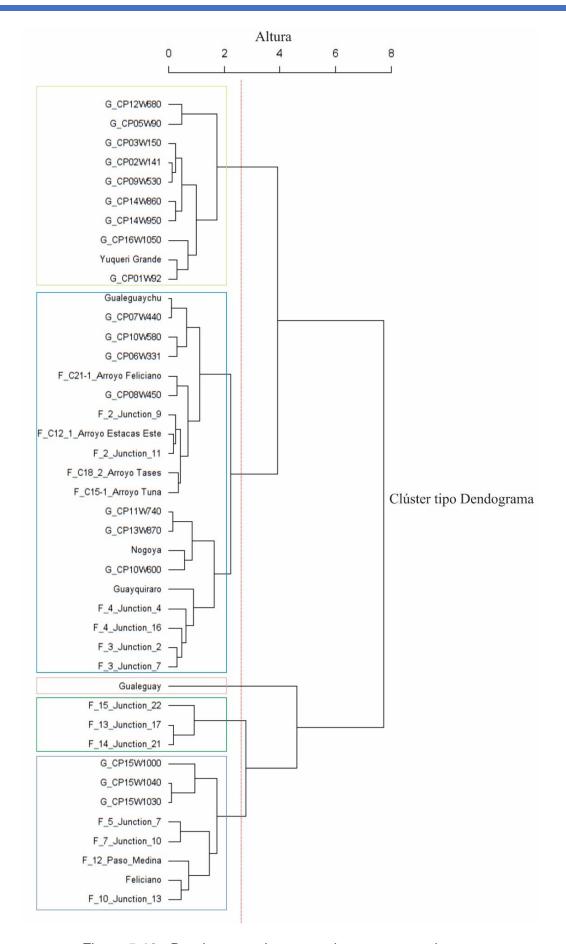


Figura 5-12 - Dendograma de grupos de cuencas y subcuencas

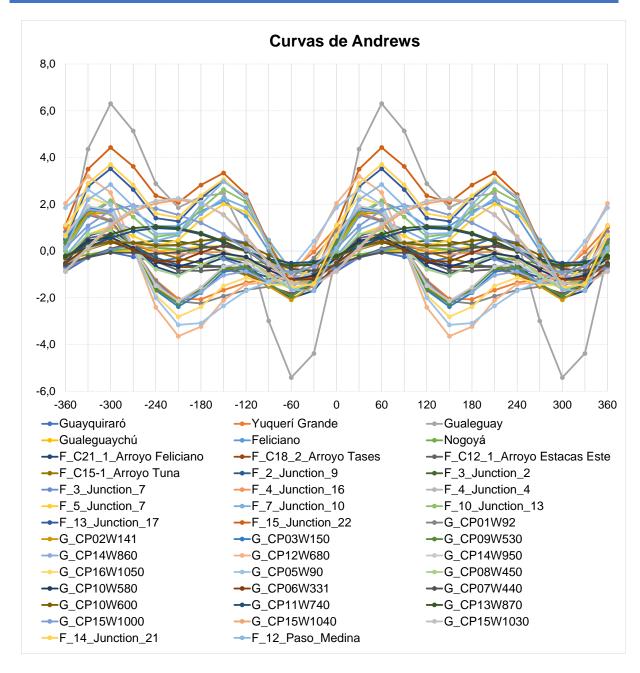


Figura 5-13 - Curvas de Andrews de Cuencas y Subcuencas en estudio

A continuación, se presentan los grupos de cuencas homogéneas obtenidos. Se conformaron tablas con los datos de las cuencas que integran cada grupo. Además, se graficó en el mapa de Entre Ríos la ubicación de las cuencas y subcuencas y, por último, se calcularon y graficaron las Curvas de Andrews para cada grupo.

El grupo 1 se formó con la cuenca del río Gualeguay y cuatro subcuencas pertenecientes a la cuenca del arroyo Feliciano. Éstas cinco componentes del grupo se caracterizaban por tener las áreas más grandes del conjunto de datos de entrada.

Los valores de las variables pertenecientes a la cuenca y subcuencas del grupo 1 se detallan en la Tabla 5-10.

Tabla 5-10 - Variables de estudio Grubo	0 - Variables de estudio Grupo 1	1
---	----------------------------------	---

Cuenca	Q ^{5años}	2 ^{5años} A		PMA ^{5años}
	m ³ /s	km ²	m/m	mm
Gualeguay	1.342	16.038	0,00009	318
F_15_Junction_22	1.990	8.210	0,00024	271
F_13_Junction_17	1.573	6.848	0,00024	273
F_14_Junction_21	1.653	7.145	0,00024	273
F_12_Paso_Medina	1.332	5.555	0,00021	275

En la Figura 5-14 se presentan la cuenca y las subcuencas que integraron el Grupo 1 ubicadas en el mapa de Entre Ríos. En esta figura las subcuencas del arroyo Feliciano están superpuestas, por lo que en el grafico se observa completa la de menor superficie (F_14_Junction_21).

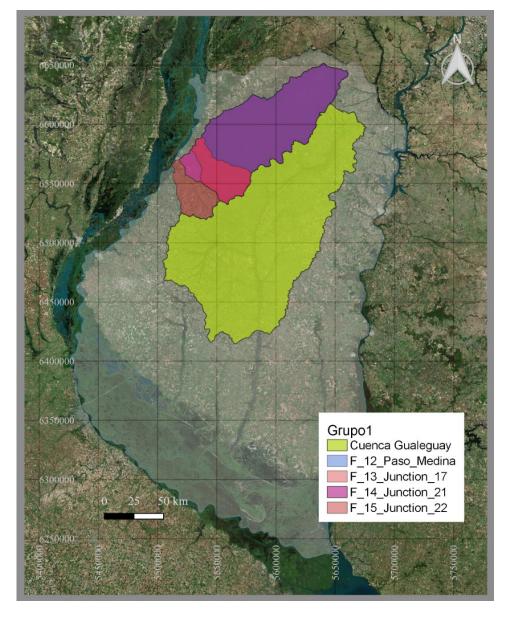


Figura 5-14 - Mapa con la cuenca y las subcuencas del Grupo 1

En la Figura 5-15 se graficaron las Curvas de Andrews del grupo 1, en las que se observa un comportamiento bastante similar, por lo que el agrupamiento realizado se considera correcto.

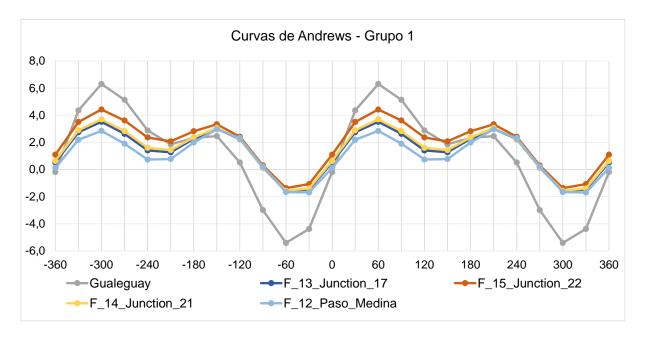


Figura 5-15 - Curvas de Andrews Grupo 1

El grupo 2 se conformó con la cuenca del Yuquerí Grande y ocho subcuencas menores pertenecientes a la cuenca del Gualeguaychú. La principal característica que homogeneizó al grupo fue que las cuencas eran las de áreas pequeñas.

Los valores de las variables pertenecientes a las cuencas y subcuencas del grupo 2 se detallan en la Tabla 5-11.

Cuenca	Q ^{5años}	Α	i	PMA ^{5años}	
	m ³ /s	km ²	m/m	mm	
G_CP12W680	121	396	0,00160	133	
G_CP03W150	79	265	0,00101	133	
G_CP02W141	50	169	0,00092	133	
G_CP09W530	89	322	0,00096	133	
G_CP14W860	153	370	0,00104	144	
G_CP14W950	243	703	0,00101	138	
G_CP16W1050	90	271	0,00125	138	
Yuquerí Grande	170	677	0,00117	166	
G_CP01W92	40	168	0,00117	166	

Tabla 5-11 – Variables de estudio Grupo 2

En la Figura 5-16 se graficaron la cuenca y subcuencas que conformaron el grupo 2 ubicadas en el mapa de Entre Ríos. En esta figura, las subcuencas del río Gualeguaychú no están superpuestas, por lo que se observan de manera completa.

En la Figura 5-17 se graficaron las Curvas de Andrews del grupo 2 que corroboran el resultado de agrupamiento obtenido mediante el análisis de Clúster.

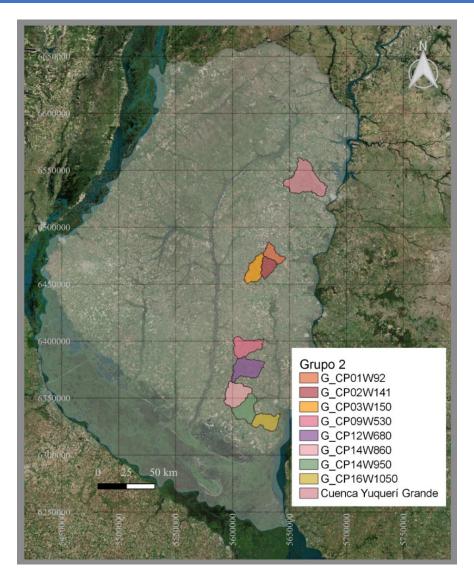


Figura 5-16 - Mapa con la cuenca y las subcuencas del Grupo 2

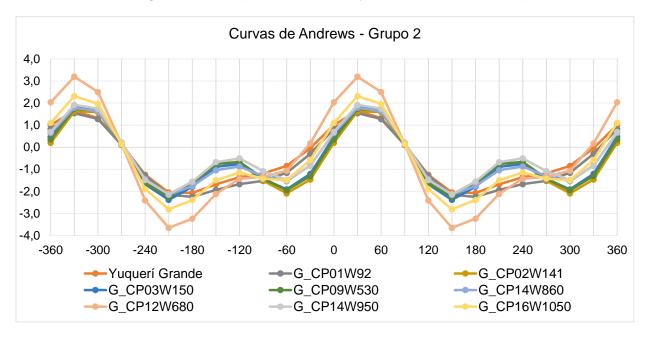


Figura 5-17 - Curvas de Andrews Grupo 2

El grupo 3 se conformó con la cuenca aforada del río Gualeguaychú, cuatro subcuencas pertenecientes a la cuenca del arroyo Feliciano y cuatro subcuencas pertenecientes a la cuenca del río Gualeguaychú. Las características principales de este grupo fueron que las áreas eran menores a medias y las pendientes altas.

Los valores de las variables pertenecientes a las cuencas y subcuencas del grupo 3 se detallan en la Tabla 5-12.

Cuenca	Q ^{5años}	Α	i	PMA ^{5años}
	m ³ /s	km ²	m/m	mm
Gualeguaychú	408	2.029	0,00042	183
G_CP07W440	386	2.280	0,00043	183
G_CP10W580	307	1.302	0,00059	166
G_CP06W331	338	1.686	0,00049	166
G_CP08W450	222	907	0,00063	153
F_2_Junction_9	229	616	0,00065	177
F_C12_1_Arroyo Estacas Este	163	216	0,00069	171
F_C18_2_Arroyo Tases	67	80	0,00058	171
F_C15-1_Arroyo Tuna	173	228	0,00058	184

Tabla 5-12 – Variables de estudio Grupo 3

En la Figura 5-18 se graficaron las Curvas de Andrews del grupo 3 que corroboran el resultado de agrupamiento obtenido mediante el análisis de Clúster.

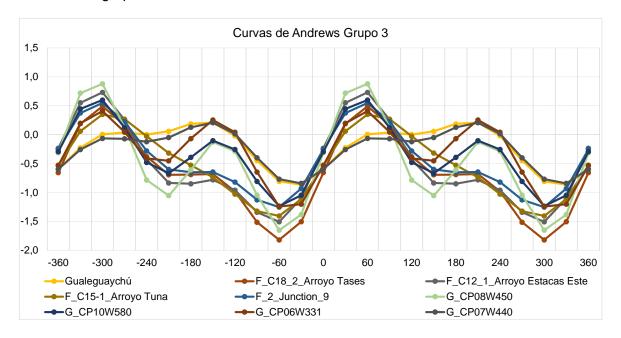


Figura 5-18 - Curvas de Andrews Grupo 3

En la Figura 5-19 se muestra en el mapa de Entre Ríos la ubicación de la cuenca y subcuencas que conformaron el Grupo 3.

En la figura, la subcuenca del arroyo Feliciano F_2_Junction_9 se superpone con las subcuencas F_C12_1_Arroyo Estacas Este, F_C18_2_Arroyo Tases, F_C15-1_Arroyo Tuna. Lo mismo sucede con las subcuencas del río Gualeguaychú, la subcuenca G_CP07W440 se

superpone con la subcuenca G_CP06W331, y la subcuenca G_CP08W450 se superpone con G_CP10W580.

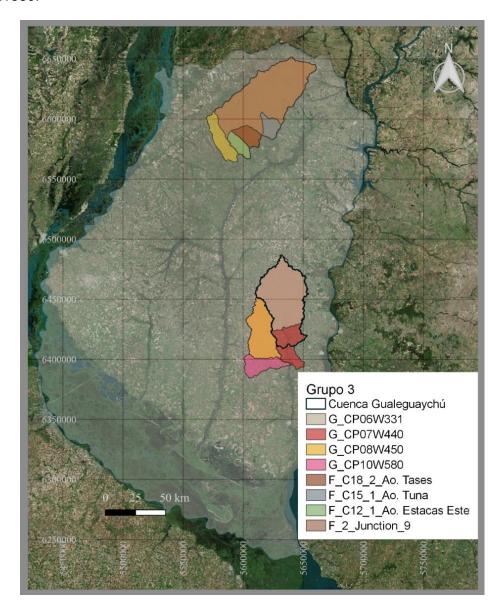


Figura 5-19 - Mapa con la cuenca y las subcuencas del Grupo 3

El grupo 4 se conformó con las cuencas aforadas del arroyo Nogoyá y del río Guayquiraró, cuatro subcuencas pertenecientes a la cuenca del arroyo Feliciano y tres subcuencas pertenecientes a la cuenca del río Gualeguaychú.

Las características principales de este grupo fueron que las áreas eran medianas a grandes y las pendientes bajas.

Los valores de las variables pertenecientes a las cuencas y subcuencas del grupo 4 se detallan en la Tabla 5-13.

En la Figura 5-20 se muestra en el mapa de Entre Ríos la ubicación de las cuenca y subcuencas que conformaron el grupo 4.

En la figura, las subcuencas del arroyo Feliciano F_3_Junction_2, F_4_Junction_4 y F_4_Junction_16 se superponen, al igual que las subcuencas del río Gualeguaychú G_CP11W740, G_CP13W870 y G_CP10W600.

Tabla 5-13 - Variables de estudio Grupo 4

Cuenca	Q ^{5años}	А	i	PMA ^{5años}
	m ³ /s	km ²	m/m	mm
G_CP11W740	743	4.762	0,00039	193
G_CP13W870	761	5.094	0,00039	198
Nogoyá	408	3.873	0,00052	194
G_CP10W600	618	3.673	0,00044	180
Guayquiraró	319	3.074	0,00036	224
F_4_Junction_4	511	1.444	0,00038	213
F_4_Junction_16	329	753	0,00048	213
F_3_Junction_2	421	1.095	0,00040	196
F_3_Junction_7	288	740	0,00044	196

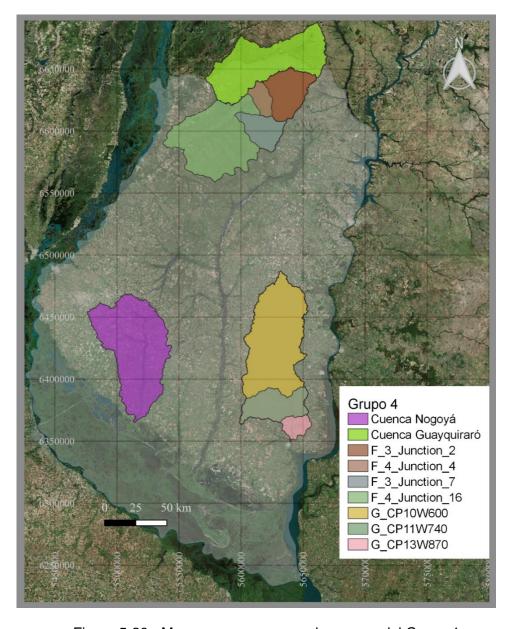


Figura 5-20 - Mapa con cuencas y subcuencas del Grupo 4

En la Figura 5-21 se graficaron las Curvas de Andrews del grupo 4 que corroboran el resultado de agrupamiento obtenido mediante el análisis de Clúster.

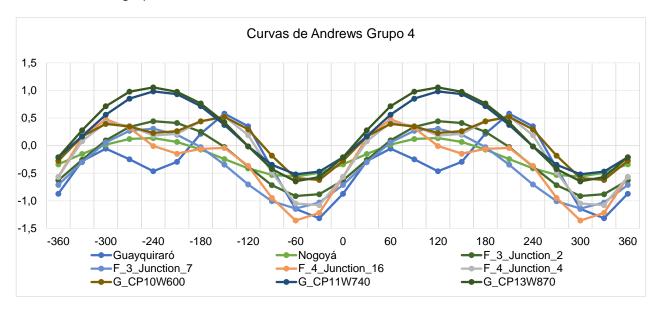


Figura 5-21 - Curvas de Andrews Grupo 4

El grupo 5 se conformó con la cuenca aforada del arroyo Feliciano, tres subcuencas pertenecientes a la cuenca del arroyo Feliciano y tres subcuencas pertenecientes a la cuenca del río Gualeguaychú. Las características principales de este grupo fueron que las áreas eran grandes y las pendientes bajas.

Los valores de las variables pertenecientes a la cuenca y subcuencas del grupo 5 se detallan en la Tabla 5-14.

Cuenca	Q ^{5años}	А	i	PMA ^{5años}
	m ³ /s	km ²	m/m	mm
G_CP15W1000	1.048	6.971	0,00037	206
G_CP15W1040	993	6.385	0,00000	206
G_CP15W1030	1.011	6.661	0,00000	206
F_5_Junction_7	945	2.437	0,00026	238
F_7_Junction_10	1.060	3.521	0,00022	242
Feliciano	1.182	5.573	0,00024	244
F_10_Junction_13	1.216	4.620	0,00022	259

Tabla 5-14 - Variables de estudio Grupo 5

En la Figura 5-22 se muestra en el mapa de Entre Ríos la ubicación de la cuenca y subcuencas que conformaron el grupo 5.

En la figura, las subcuencas del arroyo Feliciano F_5_Junction_7, F_7_Junction_10 y F_10_Junction_13 se superponen, al igual que las subcuencas del río Gualeguaychú G_CP15W1000, G_CP15W1040 y G_CP15W1030.

En la Figura 5-23 se graficaron las Curvas de Andrews del grupo 5 que corroboran el resultado de agrupamiento obtenido mediante el análisis de Clúster.

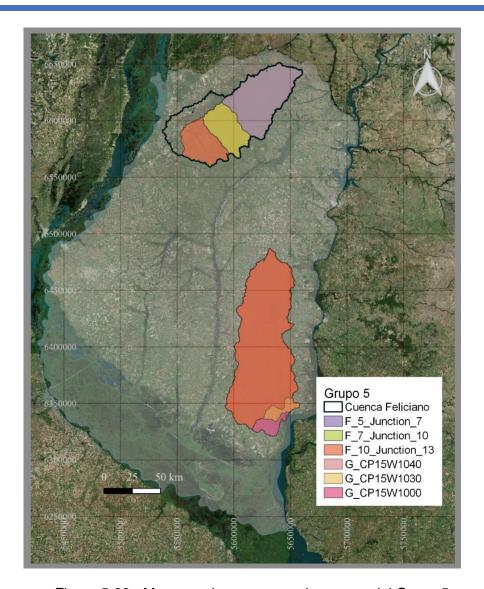


Figura 5-22 - Mapa con la cuenca y subcuencas del Grupo 5

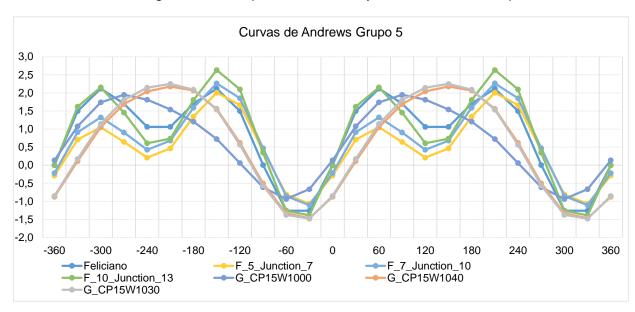


Figura 5-23 - Curvas de Andrews Grupo 5

Este procedimiento se realizó únicamente para la recurrencia de 5 años, pero los agrupamientos se respetaron para obtener las ecuaciones de caudal de cada grupo para todas las recurrencias.

5.5. ECUACIÓN REGIONAL DE CAUDALES

Luego de establecidos los distintos agrupamientos, se procedió a obtener los coeficientes pertenecientes a las ecuaciones que permitió obtener los valores de caudal máximo para una determinada cuenca según la recurrencia deseada.

En el análisis de regresión se utilizaron las propiedades de los logaritmos para linealizar la ecuación de caudal máximo. Utilizando una función del software Rstudio se aplicó el método "Regresión lineal", de esta manera se obtuvieron coeficientes que relacionan linealmente las variables elegidas y el caudal máximo.

Los coeficientes que se obtuvieron, denominados X, Y, W, Z, se reemplazaron en la siguiente expresión que permite determinar el valor de caudal máximo para una cuenca con determinadas características:

$$\ln(Q_{xa\tilde{n}os}) = Z + X * \ln(A) + Y * \ln(P) + W * \ln(PMA_{xa\tilde{n}os})$$

siendo Q: caudal máximo, A: área, P: perímetro, PMA: Precipitación Media Areal.

En la Tabla 5-15 se presenta la ecuación de estimación de caudales del Grupo 1 para una recurrencia de 2 años y los valores de las variables utilizadas. Además, los valores de los coeficientes X, Y, Z, W que conformaron la ecuación y el Error porcentual calculado entre el Caudal Máximo conocido (Q) y el Caudal Máximo Estimado.

Tabla 5-15 - Ecuación regional de caudal Grupo 1 TR 2 años

Datos Grupo 1 -	TR = 2 años
-----------------	-------------

Nº	Cuenca	Q	Α	In(A)	i	ln(i)	PMA	In(PMA)	In(Caudal Estimado)		Error (%)
3	Gualeguay	716	16.038	9,68	0,00009	-9,34	236	5,46	6,57	716	0,00%
20	F_13_Junction_17	1.036	6.848	8,83	0,00024	-8,34	201	5,30	6,94	1.034	-0,12%
21	F_15_Junction_22	1.361	8.210	9,01	0,00024	-8,33	200	5,30	7,22	1.361	-0,04%
41	F_14_Junction_21	1.103	7.145	8,87	0,00024	-8,34	201	5,30	7,01	1.105	0,16%
42	F_12_Paso_Medina	831	5.555	8,62	0,00021	-8,46	201	5,31	6,72	831	0,00%

Ecuación: $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

 $LN(Q) = 67,64+(1,36) \times LN(A) + (-0,90) \times LN(i) + (-15,14) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 1,36
Y Coeficiente de Pendiente -0,90
W Coeficiente de PMA -15,14
Z Término independiente 67,64

Los resultados de caudal máximo obtenidos con las expresiones de regionalización se contrastaron con los valores de caudal aforados o modelados. Se consideraron válidas aquellas ecuaciones donde la diferencia entre caudal estimado y caudal conocido resultó inferior al 20%.

En los casos en que se superó el 20%, se procedió a eliminar la subcuenca que no verificaba y se recalcularon los coeficientes hasta obtener la ecuación que satisfizo para todas las cuencas y subcuencas del grupo.

Cabe destacar que el objetivo inicial de este estudio era analizar únicamente cuencas aforadas de la provincia de Entre Ríos, por lo cual, si al verificar la ecuación de estimación de caudales alguna de las cinco cuencas aforadas no cumplía con el criterio de error inferior al 20%, se la dejó igual en el grupo sin descartarla, como sí se realizó con las subcuencas. Al final del estudio, todas las cuencas aforadas cumplieron con el requisito mencionado del error admisible.

Los resultados obtenidos de cada grupo para cada una de las recurrencias analizadas se presentan en el Anexo G.

5.6. ANÁLISIS DE LOS RESULTADOS OBTENIDOS

Obtenidas las ecuaciones de caudal para cada grupo de cuencas y subcuencas en función de la recurrencia, se pudo verificar que la regionalización obtenida con los métodos estadísticos era correcta descartando aquellas subcuencas que no cumplían con los requisitos de verificación y distorsionaban las características de cada grupo.

Se procedió a determinar las características que definieron cada grupo, para ello se analizaron el área y pendiente de las cuencas y subcuencas que conformaban cada uno y se obtuvieron los resultados descriptos a continuación.

En las Tablas 5-16 a 5-20 se presentaron para cada recurrencia (TR) las cuencas y subcuencas que cumplían o no con la condición de relación entre caudal conocido y caudal estimado menor al 20%. En color verde se representaron las cuencas y subcuencas que cumplieron con este criterio y en rojo las que no lo hicieron y por ello debieron ser eliminadas.

▶ **Grupo 1:** las características de la cuenca y subcuencas de este grupo son áreas grandes, entre 5.000 y 16.100 km² y bajas pendientes, entre 0,00021 y 0,00024 m/m. Se decidió incluir dentro de este grupo la cuenca del Gualeguay y la subcuenca del Feliciano en Paso Medina las cuales según el análisis de clúster no pertenecían a este grupo, pero sus parámetros se asemejaban a las restantes y eran necesarias para poder aplicar el método de regresión lineal. En este grupo no se eliminó ninguna subcuenca para ninguna recurrencia, lo que indica una buena correlación de las variables para distintas magnitudes de caudales máximos.

Superficie i Cuenca TR 2 TR 5 TR 10 TR 20 TR 50 TR 100 km^2 m/m Gualeguay 16.038 0,00009 0,00% 0.00% 0.00% 0,00% 0.00% 0,00% F_13_Junction_17 0,00024 6.848 -0,12% -0,32% 0,02% -0,06% -0,01% 0,00% F_15_Junction_22 0,00024 8.210 -0,04% -0,11% 0,01% -0,02% 0,00% 0,00% F_14_Junction_21 0,00024 7.145 0,16% 0,44% -0,02% 0,08% 0,02% -0,01% F_12_Paso_Medina 5.555 0,00021 0,00% -0,01% 0.00% 0,00% 0,00% 0,00%

Tabla 5-16 - Errores relación de caudales Grupo 1

Referencias
Error menor al 20%
Error mayor al 20%

▶ **Grupo 2**: las características de la cuenca y subcuencas de este grupo son áreas pequeñas, entre 160 y 710 km² y pendientes altas, entre 0,00092 y 0,0016 m/m. En este caso la única subcuenca que debió ser eliminada fue G_CP16W1050, perteneciente a la cuenca del río Gualeguaychú en las recurrencias de 50 y 100 años. Esto pudo deberse a

que la PMA de esa subcuenca era bastante menor a las PMA de las demás cuenca y subcuencas componentes del grupo.

Tabla 5-17 - Errores relación de caudales Grupo 2

Cuenca	Superficie km²	i m/m	TR 2	TR 5	TR 10	TR 20	TR 50	TR 100
G_CP12W680	396	0,00160	-8,77%	-2,58%	1,65%	1,68%	1,50%	0,94%
G_CP03W150	265	0,00101	-2,76%	-4,05%	-4,21%	-3,26%	-4,02%	-3,83%
G_CP02W141	170	0,00092	-10,20%	-8,13%	-7,42%	-7,49%	0,12%	1,93%
G_CP09W530	322	0,00096	0,96%	-1,65%	-5,92%	-6,52%	-14,89%	-18,72%
G_CP14W860	370	0,00104	-9,67%	-11,08%	-12,77%	-15,24%	0,18%	0,05%
G_CP14W950	703	0,00101	6,42%	2,42%	-1,28%	-1,91%	-0,37%	-1,96%
G_CP16W1050	271	0,00125	10,30%	12,98%	16,25%	19,79%	63,56%	68,92%
Yuquerí Grande	677	0,00117	2,23%	3,90%	7,48%	8,80%	8,58%	13,17%
G_CP01W92	168	0,00117	14,68%	10,76%	9,58%	8,50%	11,15%	12,01%

Referencias
Error menor al 20%
Error mayor al 20%

▶ **Grupo 3**: las características de las cuencas y subcuencas de este grupo eran áreas menores a medias, entre 70 y 2300 km² y altas pendientes, entre 0,00042 y 0,00069. Hubo dos subcuencas pertenecientes a la cuenca del arroyo Feliciano, F_2_Junction_9 y F_C15-1_ArroyoTuna, que debieron ser eliminadas para algunas recurrencias. La primera para las recurrencias de 10, 20, 50 y 100 años es decir que solo verificó para las recurrencias menores; la segunda se eliminó solo para la recurrencia de 50 años. Esto pudo deberse a que ambas tenían valores de PMA superiores a las demás componentes del grupo.

Tabla 5-18 - Errores relación de caudales Grupo 3

Cuenca	Superficie km²	i m/m	TR 2	TR 5	TR 10	TR 20	TR 50	TR 100
Gualeguaychú	2.029	0,00042	-3,17%	-3,65%	-3,63%	-1,01%	-6,01%	1,52%
G_CP07W440	2.281	0,00043	13,62%	12,14%	8,97%	6,26%	-1,03%	3,75%
G_CP10W580	1.302	0,00059	9,55%	12,17%	8,61%	7,78%	0,92%	6,39%
G_CP06W331	1.687	0,00049	-12,19%	-13,07%	-10,60%	-10,55%	3,16%	-10,05%
G_CP08W450	907	0,00063	-1,56%	1,20%	2,88%	3,53%	11,48%	3,51%
F_2_Junction_9	616	0,00065	-5,26%	-7,70%	-21,31%	-22,32%	-37,20%	-21,49%
F_C12_1_Arroyo Estacas Este	216	0,00069	4,67%	0,85%	-6,51%	-6,02%	-13,91%	-4,72%
F_C18_2_Arroyo Tases	80	0,00058	4,33%	3,76%	7,83%	7,53%	7,59%	6,26%
F_C15-1_Arroyo Tuna	228	0,00058	-7,22%	-2,89%	-5,44%	-5,75%	-30,18%	-5,33%
					Refere	nciae		

Referencias
Error menor al 20%
Error mayor al 20%

▶ Grupo 4: las características de las cuencas y subcuencas de este grupo son áreas grandes, entre 740 y 5.100 km² y bajas pendientes, entre 0,00036 y 0,00052 m/m. Este grupo es en el que más subcuencas fueron eliminadas en las diferentes recurrencias. Las únicas que no debieron eliminarse fueron las cuencas del Nogoyá y Guayquiraró y la subcuenca perteneciente a la cuenca del Arroyo Feliciano, F_3_Junction_2. Esta falta de

correlación para las distintas recurrencias puede deberse a la variabilidad de datos que tiene el grupo.

Tabla 5-19 - Errores relación de caudales Grupo 4

Cuenca	Superficie km²	i m/m	TR 2	TR 5	TR 10	TR 20	TR 50	TR 100
G_CP11W740	4.763	0,00039	34,99%	-23,02%	-13,23%	6,56%	6,92%	4,64%
G_CP13W870	5.096	0,00039	37,08%	-30,14%	-27,06%	-4,31%	0,13%	-4,49%
Nogoyá	3.873	0,00052	0,34%	8,73%	8,82%	-1,90%	-5,90%	-0,18%
G_CP10W600	3.674	0,00044	29,26%	8,75%	107%	67,02%	77,70%	137,63%
Guayquiraró	3.074	0,00036	8,14%	13,44%	5,81%	1,09%	1,98%	0,60%
F_4_Junction_4	1.444	0,00038	13,91%	-29,08%	-46,48%	-47,34%	-48,21%	-48,27%
F_4_Junction_16	753	0,00048	13,96%	-11,83%	-10,97%	3,40%	12,42%	66,77%
F_3_Junction_2	1.095	0,00040	3,58%	9,84%	12,42%	-4,35%	-13,43%	-0,36%
F_3_Junction_7	740	0,00044	20,00%	45,06%	69,96%	50,90%	38,42%	89,83%

Referencias
Error menor al 20%
Error mayor al 20%

▶ **Grupo 5:** las características de las cuencas y subcuencas de este grupo son áreas grandes, aunque menores a las del Grupo 1, entre 2.400 y 7.000 km² y bajas pendientes, entre 0,000004 y 0,0003. En este grupo no se eliminó ninguna subcuenca para ninguna recurrencia, lo que indica una buena correlación de las variables para distintas magnitudes de caudales máximos.

Tabla 5-20 - Errores relación de caudales Grupo 5

Cuenca	Superficie km²	i m/m	TR 2	TR 5	TR 10	TR 20	TR 50	TR 100
G_CP15W1000	6.974	0,00037	-4,88%	-1,84%	0,34%	1,38%	-1,06%	2,02%
G_CP15W1040	6.388	0,000004	2,53%	1,17%	-0,13%	-0,57%	1,59%	-1,86%
G_CP15W1030	6.664	0,000004	-0,93%	0,56%	1,40%	1,94%	0,85%	1,50%
F_5_Junction_7	2.437	0,00026	3,74%	-0,23%	-2,78%	-4,09%	-0,95%	-3,39%
F_7_Junction_10	3.521	0,00022	-6,00%	0,28%	6,03%	8,50%	-0,90%	9,43%
Feliciano	5.573	0,00024	12,82%	0,63%	-4,26%	-7,85%	-6,38%	-2,74%
F_10_Junction_13	4.620	0,00022	-5,92%	-0,54%	-0,28%	1,48%	7,34%	-4,30%

Referencias
Error menor al 20%
Error mayor al 20%

Los grupos no resultaron fácilmente clasificables debido a que las características físicas e hidrológicas de las variables utilizadas para definirlos resultaron muy dispares para conformar grupos homogéneos, y a la escasez de cuencas con datos medidos que sirvan de entrada para el estudio.

En cuanto a los parámetros hidrológicos el método de obtención de caudales máximos varía entre las cuencas aforadas y modeladas, siendo en las aforadas obtenido mediante el análisis de frecuencia y en las modeladas mediante la modelación hidrológica. Además, la Precipitación Media Areal tiene mucha variabilidad para las cuencas, lo que se debe a que se trata de una variable aleatoria que presenta disparidad aún en una región considerada climáticamente homogénea y es sabido que no existe una relación lineal entre precipitaciones y caudales, ya que intervienen otras variables como la humedad antecedente de la cuenca.

En la Figura 5-24 se graficó la distribución de cuencas y subcuencas según las características físicas de área y pendiente. Se puede observar que los grupos obtenidos y descriptos anteriormente se mezclan en algunos casos ya que las cuencas pertenecientes a diferentes grupos comparten alguna de las características, como el Grupo 1 con el Grupo 5. Sin embargo, algunos grupos están bien definidos como el Grupo 2.

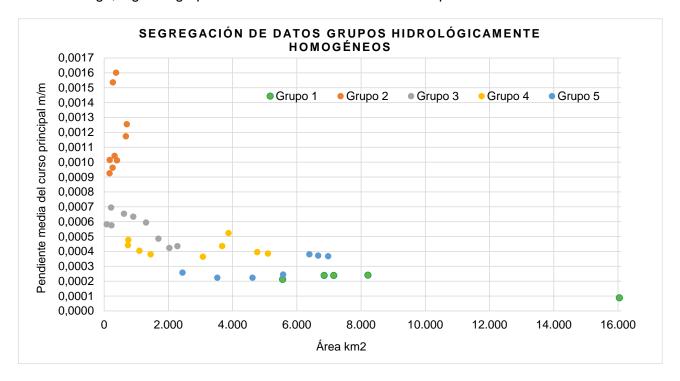


Figura 5-24 - Segregación de grupos

6. CONCLUSIONES

Del conjunto de parámetros físicos e hidrológicos que definen el comportamiento de las cuencas, se definieron tres variables principales a través del análisis de correlación múltiple que intervenían en gran medida en la variabilidad de caudal máximo de las cuencas.

Estas variables en orden de mayor a menor correlación con el caudal máximo fueron: la precipitación media areal, el área y la pendiente. La primera formó parte de la información hidrológica utilizada para el estudio y las últimas dos fueron parte de los parámetros físicos que definen a las cuencas.

Los objetivos de la investigación fueron satisfechos en los siguientes puntos:

- Se definieron obteniendo cinco regiones de cuencas y subcuencas hidrológicamente homogéneas, utilizando para definirlas metodologías estadísticas de análisis multivariado que a su vez permitieron, como se nombró anteriormente, determinar las variables significativas, luego utilizadas para definir las regiones homogéneas.
- Se desarrollaron ecuaciones regionales de caudales máximos individuales para cada recurrencia planteada, para cada una de las cinco regiones analizadas. Debido a la disparidad de los datos no se pudo obtener una única ecuación para cada región que permita, mediante un Índice de Creciente que correlacione caudales máximos con recurrencias, obtener el caudal para distintas recurrencias.

Cabe destacar que inicialmente la investigación incluía únicamente a las cuencas que cuentan con estación de aforo dentro de la provincia de Entre Ríos. Pero, debido a la escasez de información necesaria para aplicar las técnicas estadísticas y matemáticas, se incluyeron datos de subcuencas modeladas pertenecientes a las cuencas del Feliciano y Gualeguaychú para poder completar el trabajo.

La investigación realizada en este proyecto dio cuenta de la falta de registro de mediciones que proporcionen información sobre el comportamiento de la gran red hídrica que conforma la provincia de Entre Ríos. Esto resulta una gran problemática, al momento de resolver una situación donde intervienen aspectos hídricos en el diseño de una obra hidráulica o vial.

En este sentido, este estudio brinda ecuaciones prácticas que serán de utilidad para estimación de caudales máximos en forma preliminar. Las mismas no pretenden reemplazar la aplicación de modelos hidrológicos, sino que por el contrario pueden brindar resultados que convaliden a los obtenidos con estos modelos implementados en cuencas no aforadas que carecen de datos para su calibración.

7. BIBLIOGRAFÍA

Chow Ven Te, Maidment David R., Mays Larry W (1994). "Hidrología aplicada". Ed. McGraw Hill Interamericana S.A. Bogotá, Colombia.

Fatorelli Sergio, Pedro C. Fernández (2007). "Diseño Hidrológico". Ed. Digital, Zaragoza, España.

Graf, J.; Garklavs, G. y Oberg, K. A. (1982). "A Technique for estimating time of concentration and storage coefficient values for Illinois streams". Servicio Geológico de los Estados Unidos (USGS) en cooperación con la División de Recursos de Agua del Departamento de Transportes de Illinois.

Gumbel, E.J. (1941). "The return period of flood flows. The Annals of Mathematical Statistics".

Mastaglia M, Sato R, y otros (2017). "Análisis pluviométrico en cuencas de la Provincia de Entre Ríos". Publicación en el 1er Congreso Latinoamericano de Ingeniería: Paraná, Entre Ríos. Edutecne.

Sato R. (2016). "Modificaciones en el riesgo de inundación fluvial debido al desarrollo urbano junto a ríos de llanura. Estudio de caso: la ciudad de Gualeguaychú". Tesis de Maestría, Universidad Nacional del Litoral, Facultad de Ingeniería y Ciencias Hídricas, Santa Fe, Argentina.

López Patricia V., Sato Rodolfo, Mastaglia María Inés, Cattaneo Natalia, Masola Roberto, Bruno Sabina M., Margasin Andrea D, Giménez Vanesa, Collante Wojcicki Mayra D., Morley Sofia A., Erbetta Agustina, Graziadio Victor, Villanueva Gonzalo (2020). 1a ed. Estudio de tormentas de diseño en Cuencas Extensas de la provincia de Entre Ríos. Ciudad Autónoma de Buenos Aires: edUTecNe.

Bonomi R., Collante Wojcicki M., Gimenez V., Margheim J. (2017). "Estudio de tormentas de diseño en las cuencas del arroyo Feliciano y río Gualeguaychú de la provincia de Entre Ríos". Paraná, Argentina.

Zamanillo, E. A.; Larenze, G. R.; Tito, M. J.; Pérez, M. M. y Garat, M. E. (2008). "Tormentas de diseño para la provincia de Entre Ríos". Buenos Aires: Universidad Tecnológica Nacional.

Zimmermann, E. D.; Riccardi, G.; Pieroni, H. y Arraigada, M. (2000). "Curvas de Abatimiento Areal de Tormentas Región Pampa Ondulada". Cuadernos del CURIHAM. Rosario, Argentina.

Hämmerly, R.C., Paris, R.C., Paz-González, A. "Determinación de campos areales de precipitación y evapotranspiración en la margen izquierda de la cuenca del Paraná en territorio de Argentina. I: Polígonos de Thiessen y Kriging". Facultad de Ingeniería y Ciencias Hídricas (FICH), Universidad del Litoral (UNL), Ciudad Universitaria - CC 217. Ruta 168 - km 472,4 3000 Santa Fe (Argentina). Centro de Investigaciones Científicas Avanzadas (CICA) - Facultad de Ciencias, grupo AQUATERRA, Universidade da Coruña. Campus Elviña As Carballeiras s/n 15071 A Coruña (España). https://doi.org/10.17979/cadlaxe.2019.41.1.5818 enviado: 2/2/2019 aceptado 7/10/2019

Schiattino I, Silva C (2013). "Representación gráfica de información multivariante. Aplicación al sistema de salud de Chile (2010)". Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Chile.

Meneses Julio (2019). "Introducción al analisis multivariante". FUOC. Barcelona, España.

Freedman, D., Pisani, R., & Purves, R. (2007). Statistics (international student edition). Pisani, R. Purves, 4th Edn. WW Norton & Samp; Company, New York.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

Bellman, R. (1957). Functional Equations in the Theory of Dynamic Programming--VI, A Direct Convergence Proof. Annals of Mathematics, 215-223.

Hair, J. F. (2006). Multivariate data analysis (6th ed.). Pearson Prentice Hall.

Andrews, D.F. (1972) Plots of High-Dimensional Data. Biometrics, 28, 125-136.

Ramírez Roxana (2019). "Introducción a R-Studio". Paraná, Entre Ríos.

Devore Jay (2008). "Probabilidad y Estadística para Ingeniería y Ciencias". Cengage Learning Editores, Col. Cruz Manca, Santa Fe, Mexico, D.F.

Santi M, Bianchi G (2011). "Mapa hidrogeológico. Síntesis de la provincia. Entre Ríos". Dirección de hidráulica, Consejo Federal de Inversiones, Entre Ríos.

Incociv S.R.L. Consultora, Coordinación Ecológica Area Metropolitana Sociedad del Estado. "Capitulo 2 – Aspectos Biofisicos". Entre Ríos.

Fernandez Martinez J. C. (2021). "Estudio de las condiciones socio-ambientales en la cuenca del arroyo Yuquerí Grande de la localidad de Concordia, Entre Ríos". (Tesis de maestría). Universidad Nacional de Quilmes, Bernal, Argentina. Disponible en RIDAA-UNQ Repositorio Institucional Digital de Acceso Abierto de la Universidad Nacional de Quilmes http://ridaa.unq.edu.ar/handle/20.500.11807/3261

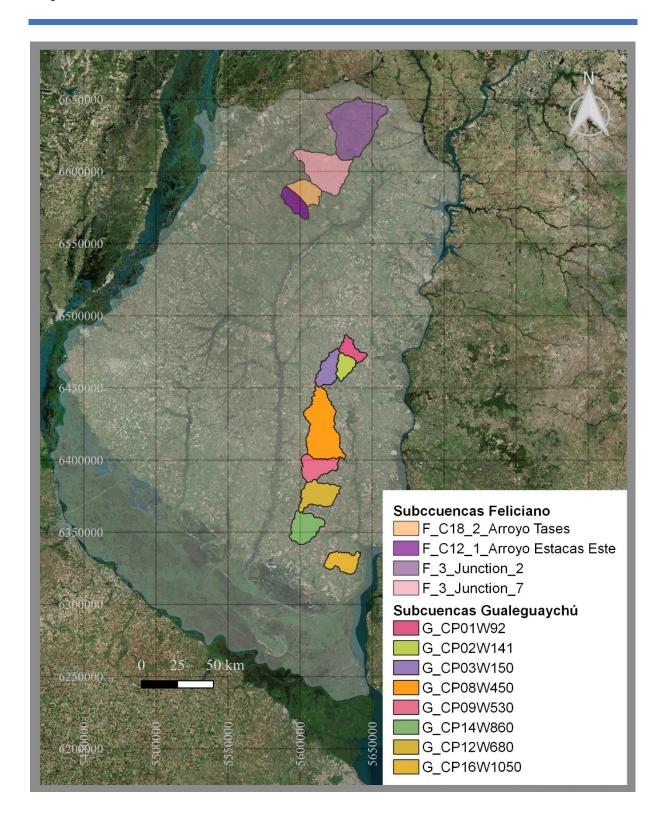
Alfredo José Simancas Cabrera. "HidraSoftware-Tutoriales al Día-Cursos Ingeniería Civil", Las Palmas de Gran Canaria, España. http://ingenieriacivil.tutorialesaldia.com/algunos-parametros-de-forma-y-drenaje-de-la-cuenca-hidrografica-y-su-relacion-con-el-tiempo-de-concentracion/

Introducción a la Regresión Lineal Múltiple by Joaquín Amat Rodrigo, available under a Attribution 4.0 International (CC BY 4.0) at

https://www.cienciadedatos.net/documentos/25_regresion_lineal_multiple

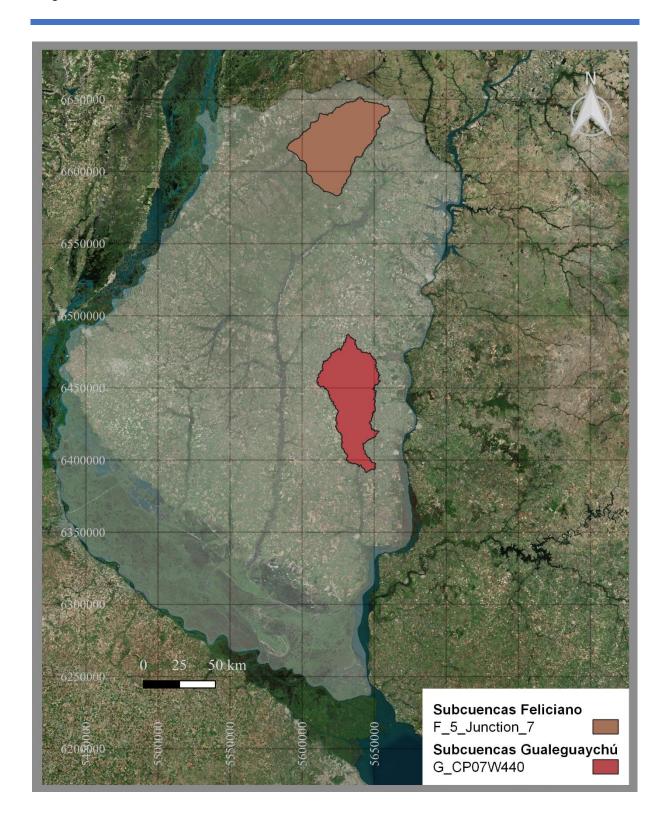
8. ANEXOS

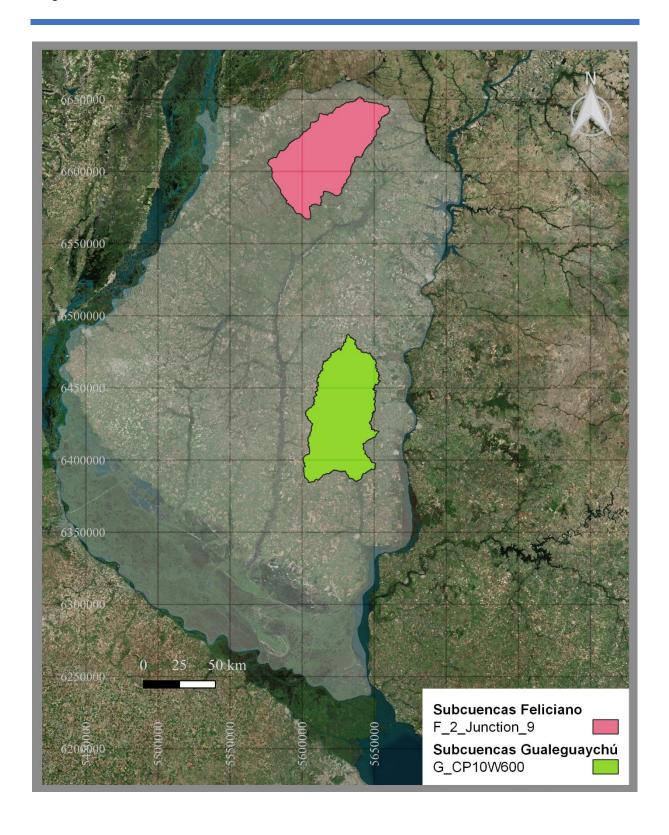
Se presentan los anexos al informe ordenados de la siguiente manera:

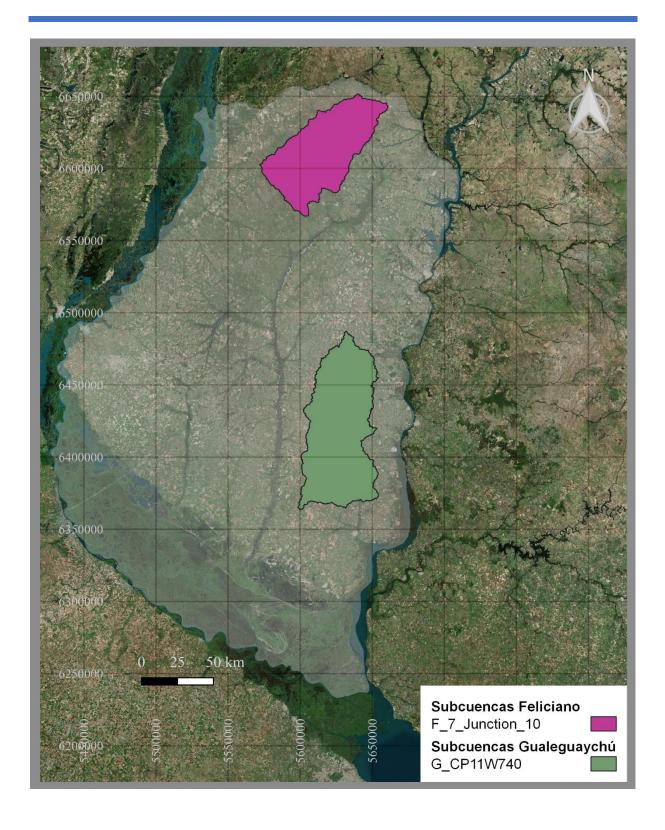

- Anexo A: Mapas de subcuencas modeladas
- Anexo B: Información de caudales máximos de cuencas aforadas
- Anexo C: Salidas del programa afmulti
- Anexo D: Valores de caudales máximos de subcuencas modeladas
- Anexo E: Valores de PMA de cuencas y subcuencas
- Anexo F: Valores de las variables analizadas
- Anexo G: Ecuaciones para el cálculo de caudales máximos
- Anexo H: Guía de aplicación.

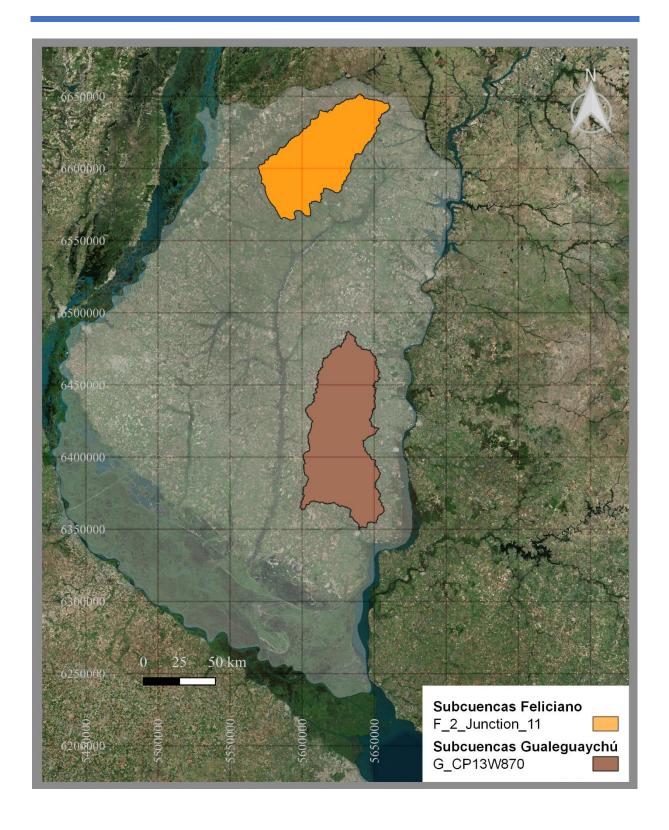
8.1. ANEXO A - MAPAS DE SUBCUENCAS MODELADAS

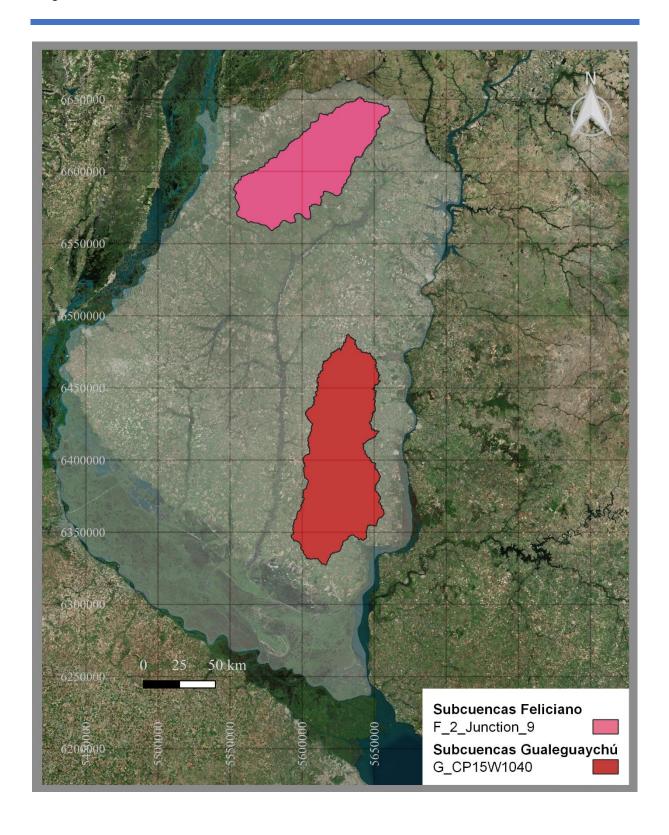
En este Anexo se presentan las subcuencas del arroyo Feliciano y del río Gualeguaychú ubicadas en el mapa de Entre Ríos individualmente para evitar superposiciones graficas entre éstas.

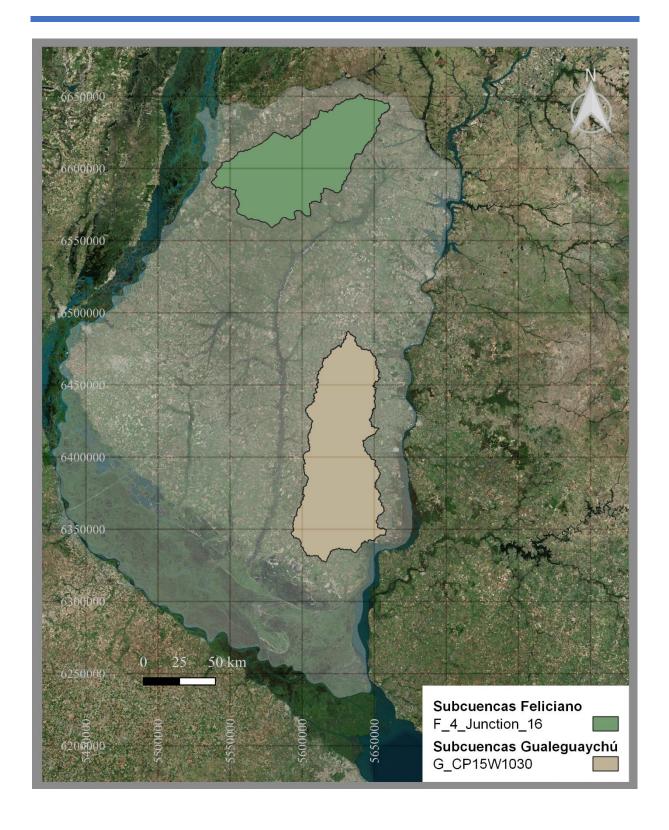


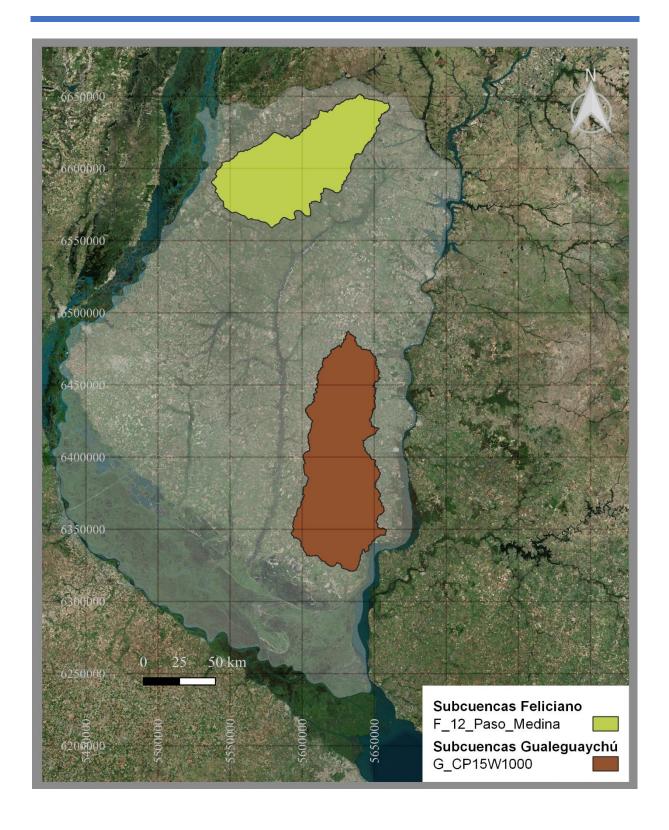


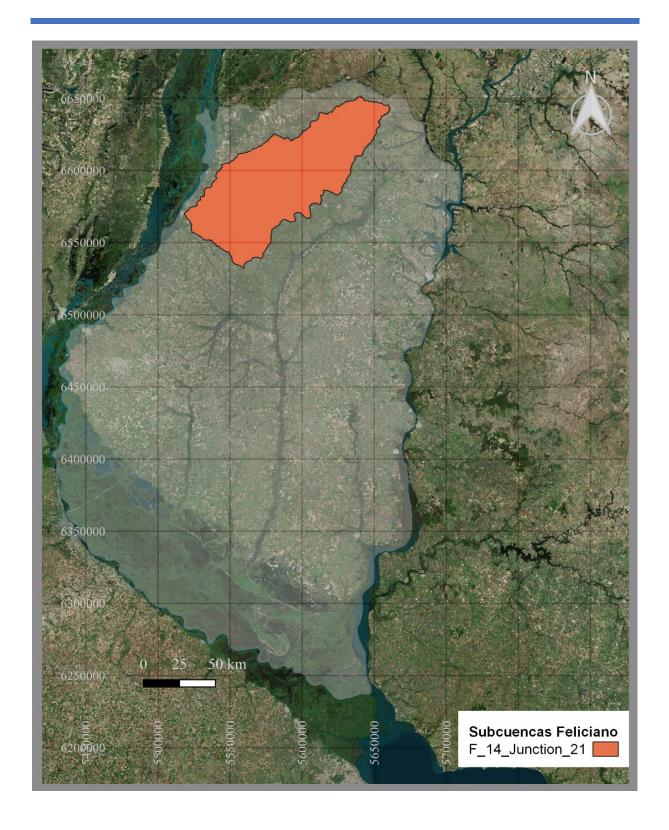


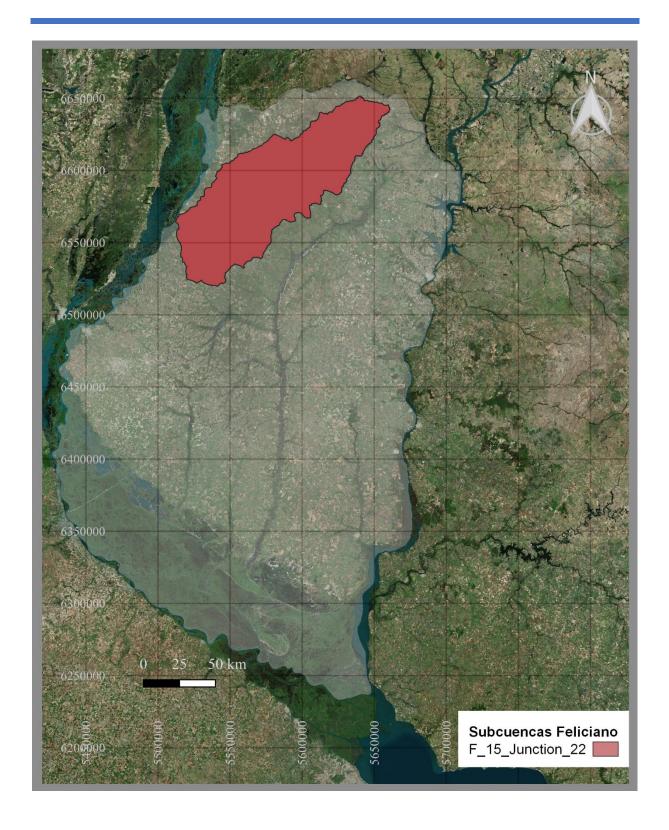












8.2. ANEXO B – INFORMACIÓN DE CAUDALES MÁXIMOS DE CUENCAS AFORADAS

En este anexo se presentan los valores de Caudal Instantáneo Máximo y Caudal Máximo Medio Diario obtenidos de la base de datos del Sistema Nacional de Información Hídrica.

Caudal instantáneo máximo (Q_{ins}) Estación 3003 - Feliciano - Paso Medina

Año hidrologico						Mes	ses					
	9	10	11	12	1	2	3	4	5	6	7	8
1975			7,2	15,9	113,0	4,4		806,5	96,5			61,0
1976	6,8	12,9	104,1	139,8	43,0			436,0	120,3	83,9		135,4
1977	64,1	17,8	132,9				206,6	160,8	4,1	142,8	192,4	104,9
1978	875,1	151,2	629,5	504,9			52,5	46,4	3,5	2,5	10,2	10,2
1979	145,4	120,3	292,3	65,6	7,2	2,1			104,1	45,3	14,4	10,2
1980	2,4	56,8	178,8	135,9	152,6	334,2	149,0	217,0	340,9	136,3	11,0	126,6
1981	39,5	26,2	12,5	3,3	2,3	2,1	2,0	2,1	87,8	108,1	31,9	4,7
1982	124,9	120,3	4,7	32,3	3,9	317,9	226,8	326,5		38,8		32,7
1983	87,4	60,2	53,7		31,1	611,0	381,6		64,5	103,7	29,2	11,0
1984				12,9	2,3		54,5			64,5	111,7	56,8
1985		133,7	161,3	33,8	1,0	8,0		845,5	431,8	266,7	192,4	54,5
1986	253,3	46,8	162,2	129,1	39,2	3,0	209,0	376,7	105,3	38,4	43,0	49,9
1987	27,7	28,1	2,8	28,1			17,8	6,1	2,2	1,9		33,4
1988	117,9	62,9	2,4	16,7	12,1	1,1	1,5	446,7	63,7	1,8	1,5	
1989	55,6	1,5	26,6	1,6	1,0	129,5	652,8	721,5		4,3	23,5	2,0
1990	3,9	165,1	138,5	190,3	90,6			214,5	155,3	331,6		41,8
1991	111,7	9,1	5,3		52,9	1,1	15,6	530,0	716,9	42,6	31,5	7,2
1992	11,8	18,6	24,3	124,9	135,0	122,0	25,8	557,1	198,5	56,8	2,1	1,0
1993	0,8	346,4	641,0	106,1	98,1	147,2	34,6	55,2	320,3	2,0	1,0	29,2
1994	23,9	153,0	46,4	45,3	4,7	43,7	223,5	66,0	39,2	2,7	0,8	0,6
1995	0,5	19,0	172,8	11,0	176,8	111,3	51,0	925,3	368,7	2,8	1,9	1,4
1996	1,0	4,4	131,2	28,1	5,3	4,9	22,0	0,5	0,5	0,5	1,1	0,6
1997	3,2	33,4	163,6	636,0	1.230,0	1.013,3	2.248,4	415,3	114,6	402,1	69,5	48,3
1998	97,3	4,7	1,5	3,3	2,1	4,3	2,0	30,0	3,0	506,9	520,6	45,3
1999	0,3	0,3	0,5	1,2	22,4	0,6	168,4	238,0	245,4	49,1	68,3	21,3
2000	464,1	19,9	69,5	9,5	665,2	556,2	99,0	67,8	40,3	227,2	23,1	135,9
2001	332,2	515,9	234,1	72,0	0,7	0,3	47,3	735,8	511,2	44,2	317,7	26,1
2002	44,0	393,6	698,9	479,2	313,2	115,8	256,5	2.254,1	811,9	346,4	8,5	40,9
2003	8,7	28,1	39,4	37,9	16,0	4,7	7,0	195,7	105,3	2,4	2,3	2,2
2004	1,8	1,8	21,9	30,0	29,0	945,1	627,9	679,7	663,8	2.373,9	101,1	17,8
2005	9,0	85,2	12,1	290,7	56,6	33,8	3,2	77,5	3,9	660,1	44,5	2,4
2006	1,7	115,0	57,2	671,0	407,4	49,9	537,6	293,5	36,8	3,3	2,4	2,3
2007	47,6	166,9	59,9	9,5	19,6	18,4	10,0	2,8	2,4	2,0	9,0	13,9
2008	10,2	367,9	57,6	3,4	2,2	7,4	23,6	299,4	5,1	2,9	4,8	4,8
2009	50,9	268,5	1.575,9	551,0	278,5	1.575,9	240,5	61,3	39,4	4,4	44.5	
2010	40.0	005.0	405.0	0.45.0	74.0	45.0	13,1	107,2	74,6	39,2	41,2	50,9
2011	10,2	665,3	485,9	345,6	71,8	15,6	41,2	143,1	40,3	52,9	52,1	178,2
2012	118,6	851,8	89,2	345,6	70,1	108,5	128,7	33,0	83,1	4,3	2,1	2,1
2013	2,1	2,0	798,0	112,3	128,7	440,6	132,8	485,5	64,9	15,6	165,0	39,8
2014	88,0	39,3	338,5	530,8	672,0	80,0	187,7	8,2	401,0	31,7	54,8	745,5
2015	117,0	16,7	177,7	1.659,8	467,7	305,5	203,2	2.243,6	582,7	48,1	92,9	46,1
2016	26,7	160,6	98,2	260,4	377,6	430,2	285,7	458,9	305,5	95,4	16,7	95,8
2017	69,2	187,7	83,1	5,8	4,4	4,4	3,0	26,7	1.529,9	56,9	80,8	28,0
2018										333,3	82,2	231,9

Estación 3004 - Gualeguay - Rosario del Tala

Año hidrologico						Me	ses					
	9	10	11	12	1	2	3	4	5	6	7	8
1992			35,9	59,1	140,3	90,2	70,4	487,8	539,7	6,0		
1993			745,9	493,6	157,1	46,7	220,5	130,4	115,7	19,0	22,0	61,2
1994	44,4	127,4	110,6	202,2	30,0	22,8	135,9	129,2	226,0	20,1	31,3	10,8
1995	12,1	91,3	338,0	92,3	30,0	75,1	117,4	218,9	214,3	83,7	10,4	8,3
1996	7,7	12,6	58,6	69,1	22,8	54,1	20,6	8,5	8,1	7,3	5,6	19,5
1997	15,4	11,0	32,6	651,2	737,5	743,1	744,5	298,8	301,5	92,3		
1998			33,9	31,0	22,0	47,0	38,0	381,5	539,7	207,4	534,9	395,9
1999	30,3	11,5	12,8	8,3	11,2	415,9	371,4	577,8	680,7	520,5	327,5	499,4
2000	403,2	314,4	86,2	75,1	70,9	592,9	432,0	282,8	115,7	353,5	125,6	240,4
2001	204,9	830,2	665,4	423,2	72,1	46,1	383,8	930,5	846,6	421,8	390,1	144,5
2002	856,2	1.250,5	1.636,5	2.106,7	1.151,7	153,9	249,6	1.856,8	1.919,0	934,8	154,6	960,8
2003	225,5	89,0	111,0	209,8	209,8	17,6	54,4	609,2	819,4	81,0	31,4	8,0
2004	7,0	8,0	106,7	70,4	114,2	298,1	833,0	2.049,7	665,1	1.395,7	421,7	187,6
2005	197,4	169,4	96,3	22,3	89,0	36,7	48,6	5,4	3,7	307,1	241,4	10,4
2006	4,0	299,1	288,6	1.281,8	901,6	176,6	2.590,7	2.043,0	458,0	28,2	17,1	8,3
2007	313,2	346,6	241,1	83,9	10,4	66,8	151,6	10,1	12,4	9,6	18,7	15,8
2008	31,5	50,0	44,8	6,3	1,2	6,3	303,6	29,7	3,3	2,0	56,5	16,4
2009	59,4	135,3	975,8	1.375,2	723,6	2.310,7	1.103,7	140,7	211,2	199,1	46,8	180,1
2010	99,1	35,1	5,7	3,5	9,3	325,7	288,1	64,3	329,3	299,1	228,4	164,7
2011	43,5	260,2	346,0	175,4	17,2	259,6	322,2	86,1	74,5	19,1	1,9	504,5
2012	303,8	2.707,0	587,2	1.194,6	485,8	52,8	114,3	71,0	1.639,7	60,6	19,3	7,4
2013	13,9	42,4	343,8	329,6	51,1	261,6	196,3	393,8	291,9	67,6	152,3	100,6
2014	263,6	123,5	111,3	232,3	801,1	438,0	308,0	23,6	116,3	65,5	42,1	843,4
2016	26,3	189,6	218,9	141,2	339,1	512,0	380,4	225,1	769,2	362,9	78,1	348,7
2017	371,2	361,4	371,2	46,4	10,0	5,0	8,4	23,1	1.610,6	311,2	168,8	132,1
2018	243,6	121,4	148,7	291,1	1.599,3	863,9	334,0	131,2	280,7	873,0	378,8	177,6
2019	562,6	297,0	298,1	382,6	380,0	313,7	93,6	73,5	116,2	186,6	162,2	6,3

Estación 3030 – Gualeguaychú - Ruta Provincial N° 39

Año hidrologico						Me	ses					
	9	10	11	12	1	2	3	4	5	6	7	8
1988												0,6
1989	0,6	0,6				265,8						
1991			1,0		1,0							
1992					23,9	3,3	6,1	391,2	273,6	23,0	0,8	1,0
1993	1,0	112,2	301,2	26,6	4,9	4,6	10,7	5,9	3,9	1,0	1,3	6,2
1994	1,7	59,5	12,0	5,1	2,8	1,0	9,0	3,6	86,5	1,3	1,2	1,0
1995	0,9	27,8	22,6	1,0	1,3	1,3	28,3	176,2	26,6	1,1	1,0	1,0
1996	1,0	0,9	0,8	1,3	0,8	0,8	6,8	0,8	5,2	1,2	0,8	1,0
1997	0,9	0,7	0,9	40,4	376,3	188,3	215,2	1,0	195,7	115,4	298,3	64,5
1998	13,0	0,8	3,3	6,0	7,2	20,1	39,7	119,7	157,3	14,6	427,0	12,6
1999	0,8	0,8	0,8	0,7	0,7	258,2	250,9	630,9	335,0	6,8	6,9	94,0
2000	4,6	3,4	2,5	2,0	5,8	263,2	319,2	263,2	1,5	263,2	5,8	84,9
2001	41,1	263,2	263,2	37,6	18,4	72,0	102,2	319,2	64,5	163,4	102,2	0,5
2002	243,6	179,2	491,1	290,2	29,7		101,4	273,0	585,2	105,9	2,1	491,1
2003	21,8	3,6	43,4	48,5	55,9	1,8	1,8	150,4	46,7	3,6	2,4	0,9
2004	1,1	1,6	42,9	1,8	20,9	31,7	34,1	536,1	51,8	115,6	9,3	31,7
2005	144,0	45,3	4,5	1,8	36,7	2,8	1,6	0,9	0,5	61,4	18,5	5,6
2006	0,6	12,2	84,9	223,1	27,2	9,5	316,8	204,4	137,8	1,5	1,2	0,7
2007	157,1	272,3	6,3	0,6	0,6	8,8	18,1	0,8	0,8	0,6	1,2	2,3
2008	0,8	1,4	0,7	3,1	0,3	1,6	154,4	5,6	0,2	0,3	34,4	1,9
2009	24,1	59,6	101,4	168,6	73,5	449,9	33,2	24,1	16,4	16,2	14,2	101,4
2010	25,9	2,2	1,2	0,4	8,1	63,3	48,6	7,7	59,8	48,6	50,1	48,6
2011	13,1	84,8	22,1	5,8	1,0	240,0	101,2	7,3	22,1	6,3	0,6	189,5
2012	104,1	200,7	22,8	118,8	19,2	2,5	8,3	6,2	240,0	6,0	15,5	1,9
2013	12,7	9,6	118,7	15,6	9,3	124,4	56,8	127,3	23,8	13,8	77,8	8,5
2014	128,3	94,9	107,3	96,5	287,4	4,4	10,8	2,5	23,1	5,2	4,9	170,4
2016	1,8	23,1	60,8	16,8	110,6	253,5	32,5	43,1	137,9	11,3	5,2	245,5
2017	182,4	58,2	12,0	1,5	1,3	1,3	1,3	5,7	377,0	1,8	110,6	37,5
2018	186,2	16,8	81,1	128,3	345,0	25,4	58,2	23,1	26,1	461,1	3,9	40,8
2019	137,9	124,1	182,4	33,8	68,9	3,2	3,2	22,4	87,8	22,3	12,2	1,9

Estación 3037 - Nogoyá - Ruta Provincial Nº 11

Año hidrologico						Me	ses					
	9	10	11	12	1	2	3	4	5	6	7	8
1984				7,0			7,4	75,7	55,7		56,5	
1985		20,6		5,1								9,2
1986	73,6	45,7	100,0	61,8							35,4	19,9
1987	19,9		11,5	4,5								
1988										3,3	3,2	10,6
1989	4,2	11,1	179,7	57,4	5,6	150,5	88,4	256,3	24,1	9,7	21,3	12,4
1990	7,1	27,6	74,6	111,4	61,8	40,9	2,6	2,8	16,3	369,0	30,5	74,6
1991	73,6	3,4	14,4	55,7	21,3	3,1	22,9	66,5	82,4	386,4	272,1	71,5
1992	57,4	49,3	11,8	36,0	42,2	36,0	24,9	93,4	81,3	45,7	60,0	3,1
1993	3,1	127,2	731,6	70,5	57,4	13,9	29,0	53,2	53,2	3,7	5,0	6,7
1994	2,6	43,6	10,0	23,7	2,9	4,6	57,4	72,5	32,1	8,1	3,5	2,4
1995	2,4	79,0	79,0	7,3	2,6	5,3	50,9	98,7	8,9	5,6	2,8	2,7
1996	3,3	2,6	12,9	7,1	6,8	29,0	122,3	49,3	3,8	2,7	3,7	5,0
1997	4,6	2,9	21,7	85,9	620,2	247,2	205,9	295,5	468,9	336,2	37,8	11,5
1998	15,2	18,2	87,1	14,9	13,8	7,5	5,9	115,9	88,3	3,3	76,8	5,7
1999	2,5	2,8	2,4	2,3	2,8	94,7	111,4	1.080,2	677,5	42,2	66,5	150,5
2000	219,0	68,5	36,0	22,5	76,8	708,0	168,8	42,2	5,9	555,1	3,9	67,5
2001	63,6	166,3	77,1	37,2	5,2	67,8	94,6	201,5	67,8	25,0	46,8	7,3
2002	91,0	83,0	141,0	114,5	89,8	91,6	50,3	157,4	147,4	38,8	17,1	153,2
2003	242,1	8,6	62,1	42,7	34,8	3,6	3,5	118,7	85,9	44,0	8,0	3,8
2004	7,0	7,5	66,0	12,2	55,4	147,7	130,7	194,2	9,8	55,0	112,4	152,0
2005	14,1	24,3	19,6	5,2	37,7	48,8	51,0	23,3	3,6	172,0	45,6	4,8
2006	3,7	3,6	70,0	253,0	68,1	72,3	904,5	904,5	553,7	30,1	25,1	5,6
2007	91,4	91,4	8,6	1,6	1,6	3,0	1,7	1,6	1,7	2,5	6,9	3,2
2008	1,8	8,4	2,3	1,8	1,7	40,6	236,8	15,6	1,7	1,7	35,9	4,2
2009	52,7	23,7	65,3	175,1	91,5	337,7	147,1	55,6	96,8	190,7	15,0	5,2
2010	59,0	3,8	3,0	2,3	13,7	68,7	77,0	55,6	144,5	62,5	14,0	5,4
2011	14,0	77,0	17,5	5,4	0,9	43,7	84,8	17,2	66,0	23,4	2,3	200,7
2012	66,0	265,9	67,8	572,6	13,7	13,3	61,1	62,3	365,1	9,0	14,9	25,8
2013	17,6	8,5	138,5	64,6	3,2	79,2	21,9	360,8	44,3	34,9	63,0	54,5
2014	73,1	87,3	68,8	44,3	471,1	39,6	126,5	19,0	158,9	11,1	25,4	303,0
2016	7,9	60,5	57,3	77,4	1.524,9	138,7	71,3	53,4	73,1	51,8	63,0	107,7
2017	103,9	78,2	81,3	12,1	94,5	12,6	16,8	23,6	122,8	19,8	11,2	16,8
2018	16,4	3,6	489,8	132,5	290,7	112,6	202,6	25,1	52,7	92,7	32,5	20,1
2019	50,3	9,5	74,8	63,9	81,4	10,0	11,7	3,9	5,2	1,7	1,1	0,9

Estación 3061 - Yuquerí Grande - Concordia

Año hidrologico						Me	ses					
	9	10	11	12	1	2	3	4	5	6	7	8
1991		2,3	1,7	9,4								
1992					11,0	2,3	4,5	24,4	188,9	2,0	2,0	2,5
1993	2,0	84,7	157,7	76,4	1,3	0,9	0,8	0,7	1,1	4,1	11,7	30,8
1994	7,9	49,6	1,1	9,7	0,7	5,9	19,6	8,5	5,6	0,5	0,6	0,4
1995	0,6	5,4	3,6	0,2	24,4	9,4	9,7	91,5	0,7	0,3	0,3	0,3
1996	0,8	1,4	107,9	0,6	1,4	0,8	0,5	0,8	2,0	0,9	0,7	0,7
1997	1,3	258,3	275,2	255,0	270,1	160,3	237,2	255,0	232,4	177,8	13,8	17,8
1998	160,3	12,4	6,1	8,8	7,4	14,6	7,9	11,3	6,3	126,9	145,0	1,6
1999	1,6	1,6	1,1	0,8	0,8	1,0	9,4	6,3	101,6	16,6	48,1	3,1
2000	26,4		3,2	1,5	18,7	31,4	34,3	33,1	6,6	69,3	1,2	7,9
2001	79,1	71,1	31,4	1,7	1,6	2,0	6,6	115,6	21,0	8,8	29,1	3,2
2002	22,7	103,7	105,0	98,5	15,8	20,9	38,4	107,0	38,4	14,3	7,0	47,4
2003	8,6	17,4	65,0	19,5	5,5	2,0	11,2	27,7	6,4	2,7	6,7	1,7
2004	2,1	3,1	1,4	2,4	1,0	27,8	41,6	160,8	15,0	73,1	24,5	7,9
2005	3,4	7,3	1,1	0,9	1,0	0,8	0,9	1,1	1,2	10,9	4,9	1,0
2006	1,1	7,3	7,7	42,0	36,3	34,6	96,6	26,7	1,1	2,5	2,6	2,5
2007	11,6	21,4	23,8	3,1	2,0	4,3	1,3	0,5	0,9	1,0	0,4	0,5
2008	0,9	129,5	38,8	0,6	0,4	0,6	0,6	0,6	0,6	0,7	2,5	4,0
2009	23,8	11,3	0,3	238,6	39,3	31,6	2,1	0,8	1,3	1,2	3,2	2,5
2010	11,7	5,1	1,4	1,0	1,0	1,2	1,3	1,3	1,0	0,9	0,8	2,7
2011	0,7	2,3	2,1	0,6	0,6	1,4	1,0	0,4	0,6	0,5	0,5	0,5
2012	0,8	254,2	18,0	1,3	5,6	0,8	2,0	1,3	2,7	2,1	1,5	1,5
2013	1,7	7,1	47,2	2,6	0,8	1,7	0,6	45,2	1,7	6,6	34,3	1,8

Estación 3808 - Guayquiraró - Paso Juncue

Año hidrologico						Me	ses					
	9	10	11	12	1	2	3	4	5	6	7	8
1975		30,6	30,0	3,2	27,3	24,6	216,6		44,5	5,9		
1976		64,0			102,5	98,3				49,9	35,6	
1977	5,1	35,6										
1978				198,2			26,7	6,4	6,4		3,0	
1979		65,9		9,9			73,6	59,0		8,4	2,9	2,3
1980	3,5			106,9		295,2						
1981				5,1	5,5							
1982				48,2	13,6		62,4	186,3				
1983												3,2
1984	30,6	98,7	68,3		13,2	29,5	56,4	182,6	79,5	60,9	90,9	47,1
1985	8,2		86,0	0,6	18,1	16,8	35,6	277,5	190,6	139,8	106,9	
1986	116,2					1,9				39,3	21,1	
1987		0,5	16,8	0,7	512,8	156,6	11,1		0,1	4,7	3,2	2,0
1988		39,6	4,5	21,9	1,9	5,7			31,7	0,0	0,0	94,1
1989	21,1	10,2	18,1	2,2	9,2	96,9						
1990	10,0	130,2	114,7	143,7	61,3	24,1	0,6	201,3	126,0	139,8	98,7	45,5
1991	10,8	28,9	3,4	113,2		12,6	82,9	278,7			55,6	12,6
1992	13,0	13,8	14,4	140,4						38,9	0,8	0,2
1993	0,0	157,2	300,4	57,9	1,5	14,2	10,9	11,9	62,0	11,5	10,4	27,8
1994	28,9	137,1	32,3	9,9	6,8	45,1	262,9	32,3	56,4	1,7	0,3	0,1
1995	0,0	5,4	5,1	1,1	5,4	7,3	32,3	185,1	185,1	1,0	0,1	0,0
1996	0,0	0,8	79,0	2,0	6,5	5,8	4,9	0,6	0,2	0,0	1,1	4,1
1997	14,0	18,3	89,3	248,6	240,8	364,8	231,6	305,6	114,4	167,1	100,1	30,2
1998	116,9	16,6	2,5	18,9	1,3	63,4	9,2	27,6	14,4	112,0	94,2	4,5
1999	0,4	0,7	0,1	0,1	1,8		198,1		87,5	35,2	86,3	3,2
2000	5,1	18,7	55,1	15,2	293,7	269,2	19,3	15,6	79,9	104,8	21,4	57,5
2001	55,1	214,5	115,4	63,4	3,2	0,3	18,3	302,4	198,1	39,5	130,8	16,4
2002	74,2	118,9	80,5	290,7	179,9	9,5	229,3	314,7	186,1	113,8	5,3	16,6
2003	3,7	104,1	56,6	41,1	20,7	1,2	3,5	49,6	13,2	1,9	2,5	0,7
2004	0,6	18,0	66,1	27,0	14,6	208,4	136,6	141,7	59,5	128,5	101,5	6,8
2005	3,3	3,7	3,7	84,8	13,8	31,0	25,9	71,8	0,6	250,1	26,9	0,5
2006	0,5	38,7	46,1	190,3	68,9	18,6	57,6	129,1	145,2	11,0	0,6	0,5
2007	25,5	188,9	205,0	58,8	5,2	33,9	24,6					
2008											0,0	0,0
2009	19,3	4,4	220,4	216,0	75,9	291,3	74,3	41,5	3,2	2,8	2,8	7,1
2010	35,7	2,3	1,0	1,0	1,0	2,8	0,9	2,4	3,7	2,3	1,6	12,2
2011	4,1	236,0	229,4	145,1	67,2	39,8	2,2	3,7	1,5			

Caudal Máximo Medio Diario (Q_{md}) Estación 3003 - Feliciano - Paso Medina

Año												
hidrologico						Me	ses					
2 2 9 2 9												
	9	10	11	12	1	2	3	4	5	6	7	8
1975	162,2	152,6	7,2	15,9	113,0	4,4	250,1	806,5	96,5	18,2		61,0
1976	6,8	12,9	104,1	139,8	43,0	566,6	532,9	436,0	120,3	83,9	56,0	135,5
1977	64,1	17,8	132,9		90,6	33,4	206,6	160,8	4,1	142,8	192,4	104,9
1978	875,1	151,2	629,5	504,9	11,0	5,7	52,6	46,4	3,5	2,5	10,2	10,2
1979	145,4	120,3	292,3	65,6	7,2	2,1	93,3	58,7	104,1	45,3	14,4	10,2
1980	2,4	56,8	178,8	135,9	152,6	334,2	149,0	217,0	340,9	136,3	11,0	126,6
1981	39,5	26,2	12,5	3,3	2,3	2,1	2,0	2,1	87,8	108,1	31,9	4,8
1982	124,9	120,3	4,8	32,3	3,9	317,9	226,8	326,5	308,6	38,8		32,7
1983	87,4	60,2	53,7		31,1	611,0	381,6	413,9	64,5	103,7	29,2	11,0
1984		210,8	174,3	12,9	2,3	33,8	54,5	481,7	373,4	64,5	111,8	56,8
1985	41,1	133,7	161,3	33,8	1,0	8,0	42,6	845,5	431,8	266,7	192,4	54,5
1986	253,3	46,8	162,2	129,1	39,2	3,0	209,0	376,7	105,3	38,4	43,0	49,9
1987	27,7	28,1	2,8	28,1	1.934,4	167,5	17,8	6,1	2,2	1,9	1,8	33,4
1988	117,9	62,9	2,4	16,7	12,1	1,1	1,5	446,7	63,7	1,8	1,5	39,5
1989	55,6	1,5	26,6	1,6	1,0	129,5	652,8	721,5	431,8	4,3	23,5	2,0
1990	3,9	165,1	138,5	190,3	90,6	29,2	22,0	214,5	155,3	331,6		41,8
1991	111,8	9,1	5,3	60,2	52,9	1,1	15,6	530,0	716,9	42,6	31,5	7,2
1992	11,8	18,6	24,3	124,9	135,0	122,0	25,8	557,1	198,5	56,8	2,1	1,0
1993	0,8	346,4	641,0	106,1	98,1	147,2	34,6	55,2	320,3	2,0	1,0	29,2
1994	23,9	153,0	46,4	45,3	4,8	43,7	223,5	66,0	39,2	2,7	0,8	0,6
1995	0,5	19,0	172,8	11,0	176,8	111,3	51,0	925,3	368,7	2,8	1,9	1,4
1996	1,0	4,4	131,2	28,1	5,3	4,9	22,0	0,6	0,5	0,5	1,1	0,6
1997	3,2	28,7	161,0	625,2	1.173,3	1.001,3	2.179,9	386,2	111,3	385,2	68,8	47,1
1998	95,4	5,3	1,4	3,3	2,0	4,1	1,9	28,7	3,0	506,1	511,9	45,3
1999	0,4	0,4	0,5	1,1	22,0	0,6	154,0	220,6	240,8	52,5	65,0	20,6
2000	431,8	17,9	69,0	16,5	648,1	583,5	91,0	63,4	36,5	220,2	23,2	130,2
2001	323,6	512,4	264,9	78,4	0,7	0,4	45,4	731,2	563,6	43,0	293,7	30,3
2002	42,4	382,6	651,9	472,0	320,5	95,2	254,3	2.065,3	830,2	314,1	10,7	40,1
2003	8,4	26,8	37,7	35,4	17,9	4,5	6,8	189,8	104,9	2,4	2,3	2,2
2004	1,8	1,8	19,2	23,8	23,2	878,8	618,0	649,7	659,7	1.978,9	103,5	16,8
2005	8,0	79,7	10,7	285,8	55,8	29,1	3,2	57,8	4,9	657,6	44,2	2,4
2006	1,7	105,1	48,8	665,8	415,5	57,6	525,0	286,5	36,2	3,3	2,4	2,3
2007	44,1	154,2	57,6	9,3	19,2	18,3	9,5	2,7	2,5	2,0	7,7	12,9
2008	10,1	351,9	60,3	3,4	3,2	6,6	23,4	293,0	5,0	2,7	4,3	4,8
2009	50,2	268,2	1.575,9	522,5	265,8	1.338,4	256,8	60,2	38,3			
2010							11,7	99,5	67,0	36,2	38,5	49,4
2011	9,7	656,1	418,2	315,0	69,1	13,7	38,7	135,8	38,9	52,4	51,1	175,3
2012	114,5	829,2	86,2	329,9	69,1	106,5	120,4	31,5	77,3	4,2	2,1	2,1
2013	2,1	1,9	779,0	111,3	125,5	411,9	127,4	437,3	63,3	15,3	162,8	37,8
2014	87,7	37,6	241,6	528,2	659,2	76,7	156,3	7,8	343,6	20,2	53,3	732,0
2015	111,9	16,0	176,5	1.650,0	449,1	302,2	163,6	2.147,7	487,4	43,4	91,6	44,4
2016	26,7	143,4	97,8	256,2	365,0	424,2	281,5	456,4	305,5	92,2	16,7	92,4
2017	65,7	172,4	80,1	5,2	4,3	4,3	2,9	19,4	1.495,4	56,9	78,3	27,1
2018										312,4	81,3	201,0

Estación 3004 - Gualeguay - Rosario del Tala

Año hidrologico						Mes	ses					
	9	10	11	12	1	2	3	4	5	6	7	8
1992			35,9	59,1	140,3	90,2	70,4	487,8	539,7	449,5	90,2	17,5
1993	14,7	508,7	745,9	493,6	157,1	46,7	220,5	130,4	115,7	19,0	22,0	61,2
1994	44,4	127,4	110,6	202,2	30,0	22,8	135,9	129,2	226,0	20,1	31,3	10,8
1995	12,1	91,3	338,0	92,3	30,0	75,1	117,4	219,0	214,3	83,7	10,4	8,3
1996	7,7	12,6	58,6	69,1	22,8	54,1	20,6	8,5	8,1	7,3	5,6	19,5
1997	15,4	11,0	32,6	651,2	737,5	743,1	744,5	298,8	301,5	380,5	392,8	340,9
1998	187,5	87,2	33,9	31,0	22,0	47,0	38,0	381,5	539,7	207,4	534,9	395,9
1999	30,3	11,5	12,8	8,3	11,2	415,9	371,4	577,8	680,7	520,5	327,5	499,4
2000	398,6	313,7	85,9	74,6	68,8	590,3	431,7	280,3	116,2	351,4	125,9	229,9
2001	203,7	828,6	660,4	422,8	72,2	45,0	372,3	927,8	847,4	422,0	389,1	143,3
2002	834,9	1.235,3	1.601,5	2.078,5	1.134,3	152,6	243,5	1.786,2	1.908,6	940,3	154,3	959,9
2003	196,5	88,2	105,9	208,7	209,1	16,8	53,6	612,2	815,3	71,3	31,2	8,0
2004	6,9	7,8	104,3	68,5	109,5	297,5	827,4	2.011,4	664,7	1.354,8	424,7	185,0
2005	184,9	167,3	94,8	22,0	77,5	35,5	42,9	5,3	3,7	298,6	241,7	10,1
2006	4,1	294,8	284,1	1.266,3	875,8	178,9	2.523,4	2.022,9	434,4	28,1	16,9	8,3
2007	300,8	346,2	240,9	83,5	9,9	65,3	142,4	10,0	12,3	9,5	18,1	16,7
2008	30,8	49,3	44,0	6,2	1,2	6,3	271,1	28,6	3,2	2,0	48,3	16,3
2009	56,7	134,2	1.001,3	1.362,9	722,7	2.272,5	1.085,5	135,8	203,0	190,5	44,9	178,0
2010	95,1	34,5	5,7	3,4	8,8	311,1	276,6	63,6	322,9	295,8	227,2	158,6
2011	40,7	259,4	345,1	167,2	17,2	256,8	316,2	80,3	69,7	17,9	1,9	494,0
2012	296,0	2.625,2	570,7	1.169,9	462,3	51,8	112,1	67,6	1.622,5	59,5	19,0	7,1
2013	13,7	28,5	341,3	322,2	49,6	260,4	194,1	393,8	281,7	66,7	142,9	98,8
2014	262,0	122,2	103,1	228,0	795,0	415,0	307,1	22,9	114,9	54,3	34,1	832,0
2016	26,3	188,1	218,1	138,3	337,6	500,6	376,5	221,6	753,2	358,2	75,2	345,3
2017	369,9	360,2	370,3	45,4	9,6	4,9	8,5	21,4	1.579,8	301,5	165,2	123,8
2018	241,9	116,9	145,1	287,1	1.598,0	819,4	327,8	129,0	279,7	855,4	371,4	176,5
2019	551,4	287,1	292,5	382,4	378,1	313,5	93,1	72,4	111,6	185,8	159,9	6,1

Estación 3030 – Gualeguaychú - Ruta Provincial N° 39

Año hidrologico						Mes	ses					
	9	10	11	12	1	2	3	4	5	6	7	8
1987								9,6	8,6	7,2		
1988	316,1	13,8	1,1	5,9	0,5	0,5	0,9	0,7	0,7	0,6	0,7	0,7
1989	0,7	0,7	184,8	6,2	0,8	265,8	1,3	0,7	0,8	0,6	0,7	
1990	1,3	81,1	25,2	197,5	34,4	8,6	0,6	70,7		205,2	5,1	1,1
1991	18,4	1,0	1,0	51,5	1,0	2,0	1,8	30,6	34,4	26,3	31,5	1,3
1992	12,7	10,7	1,0	1,1	23,9	3,3	6,1	391,2	273,6	23,0	0,8	1,0
1993	1,0	112,2	301,2	26,6	4,9	4,6	10,7	5,9	4,0	1,0	1,3	6,2
1994	1,7	59,5	12,0	5,1	2,8	1,0	9,0	3,7	86,5	1,3	1,2	1,0
1995	0,9	27,8	22,6	1,0	1,3	1,3	28,3	176,2	26,6	1,1	1,0	1,0
1996	1,0	0,9	0,8	1,3	0,8	0,8	6,8	0,8	5,3	1,2	0,8	1,0
1997	0,9	0,7	0,9	40,4	376,3	188,3	215,2	1,0	195,7	115,4	298,3	64,5
1998	13,0	0,8	3,3	6,0	7,2	20,1	39,7	119,8	157,3	14,6	427,0	12,6
1999	0,8	0,8	0,8	0,7	0,7	258,2	250,9	630,9	335,0	6,8	6,9	94,0
2000	4,0	3,0	2,3	1,9	5,5	251,5	293,7	258,5	2,3	263,2	5,6	79,3
2001	39,5	263,2	263,2	90,3	16,9	67,3	102,2	273,4	62,2	132,9	95,3	0,5
2002	214,8	159,2	434,5	286,4	26,1	42,2	98,6	265,7	518,1	101,1	11,2	452,6
2004	1,1	1,4	38,0	1,7	21,7	31,1	36,3	471,3	50,7	107,9	9,0	30,3
2005	134,9	43,3	4,4	1,7	31,8	2,7	1,6	0,9	0,5	56,3	19,0	5,3
2006	0,6	26,4	71,5	211,3	24,3	9,5	292,1	205,9	128,1	1,5	1,2	0,7
2007	137,8	251,0	6,2	0,6	0,6	7,3	17,7	0,8	0,8	0,6	1,2	2,2
2008	0,8	1,4	0,7	2,6	0,3	1,6	132,8	5,5	0,2	0,3	32,2	3,4
2009	23,4	55,5	98,7	158,0	73,1	435,9	32,9	23,1	16,1	16,0	14,3	100,0
2010	25,6	2,0	1,2	0,4	7,0	61,3	48,1	7,4	58,3	46,2	49,7	46,8
2011	12,9	79,9	22,1	5,4	1,0	202,6	100,5	7,0	20,9	5,8	0,6	189,5
2012	97,0	187,6	21,0	108,2	18,0	2,4	8,1	5,1	230,1	5,4	15,2	1,8
2013	12,2	8,5	112,8	15,4	5,0	113,9	50,8	119,5	22,9	13,6	74,6	5,6
2014	121,7	91,0	97,0	88,3	268,1	3,6	10,6	1,9	21,9	4,9	4,6	162,1
2016	1,8	21,4	58,5	15,9	104,9	245,8	28,5	37,1	134,4	10,5	4,8	228,6
2017	173,7	50,5	11,4	1,5	1,3	1,3	1,3	5,3	336,1	1,8	93,7	27,1
2018	154,6	15,4	77,4	122,9	335,6	23,1	53,0	21,4	25,6	451,0	3,1	37,9
2019	122,3	113,5	178,4	31,3	64,5	2,9	3,0	15,4	76,1	20,4	11,7	1,2

Estación 3037- Nogoyá – Ruta Provincial N° 11

Año hidrologico						Mes	ses					
	9	10	11	12	1	2	3	4	5	6	7	8
1984			7,9	7,0	3,4	7,2	7,4	75,7	55,7	29,0	56,5	39,0
1985	25,4	20,6	5,7	5,1	-,	,	,			, , ,	, _	9,2
1986	73,6	45,7	100,0	61,8							35,4	19,9
1987	19,9	4,6	11,6	4,5								
1988										3,3	3,2	10,6
1989	4,2	11,1	179,7	57,4	5,6	150,5	88,4	256,3	24,1	9,7	21,3	12,4
1990	7,1	27,6	74,6	111,4	61,8	40,9	2,6	2,8	16,3	369,0	30,5	74,6
1991	73,6	3,4	14,4	55,7	21,3	3,1	22,9	66,5	82,4	386,4	272,1	71,5
1992	57,4	49,3	11,8	36,0	42,2	36,0	24,9	93,4	81,3	45,7	60,0	3,1
1993	3,1	127,2	731,7	70,5	57,4	13,9	29,0	53,2	53,2	3,8	5,0	6,7
1994	2,6	43,6	10,0	23,7	2,9	4,6	57,4	72,5	32,1	8,1	3,5	2,4
1995	2,4	79,0	79,0	7,3	2,6	5,3	50,9	98,7	8,9	5,6	2,8	2,7
1996	3,3	2,6	12,9	7,1	6,8	29,0	122,3	49,3	3,8	2,7	3,8	5,0
1997	4,6	2,9	21,8	83,4	466,5	247,0	181,2	281,4	431,8	331,8	37,8	11,6
1998	13,5	18,3	83,4	19,2	12,8	7,3	5,8	105,6	84,2	3,2	72,5	5,6
1999	2,5	2,6	2,4	2,2	2,7	127,4	225,8	367,5	548,6	69,1	65,3	125,9
2000	197,0	68,0	33,1	20,9	74,8	687,9	185,1	40,9	5,9	530,3	3,8	65,1
2001	62,7	152,2	75,4	46,1	5,2	60,3	85,0	183,8	62,2	24,4	41,2	7,2
2002	88,2	80,6	132,4	111,3	93,1	91,4	49,0	150,6	139,6	44,0	17,0	140,8
2003	212,7	8,5	60,1	40,1	33,4	3,6	3,5	105,5	77,1	40,4	7,8	3,8
2004	6,9	7,2	59,4	11,8	55,4	126,7	123,5	182,2	9,9	52,0	98,5	142,7
2005	14,7	23,3	20,3	5,2	36,0	46,5	48,8	23,6	3,5	147,6	48,6	4,7
2006	3,7	6,3	65,1	231,5	68,0	66,3	898,9	759,9	521,2	29,9	25,1	5,3
2007	91,4	87,3	8,5	1,6	1,6	3,0	1,7	1,6	1,7	2,5	6,8	3,2
2008	1,8	8,2	2,3	1,8	1,7	35,2	197,1	13,7	1,7	1,7	35,6	4,4
2009	49,1	22,8	64,6	163,0	87,5	324,8	146,4	53,1	104,4	166,3	15,4	5,4
2010 2011	59,0 13,9	3,6 70,8	2,8 17,0	2,2 1,6	12,2 0,9	56,4 38,7	65,9 81,8	55,4 10,1	129,1 65,2	60,8 21,3	11,5 2,2	5,2 175,4
2011	65,2	251,3	63,9	479,2	12,5	30,7 12,5	59,3	55,0	323,7		2,2 14,8	25,0
2012	17,2	7,2	120,2	62,8	3,0	78,1	21,5	311,3	323,7 40,1	8,8 28,9	61,6	53,8
2013	73,1	85,9	67,2	44,3	425,3	39,4	126,5	19,0	151,8	4,1	25,4	271,9
2014	7,4	55,6	54,7	74,5	1.208,3	122,2	70,7	50,8	71,9	51,5	62,7	101,4
2017	98,2	78,1	77,9	11,9	92,3	12,6	16,5	23,5	119,8	19,6	11,2	15,8
2017	15,7	3,5	453,5	122,7	269,3	106,8	176,8	19,9	52,4	91,6	32,2	19,3
2019	45,8	9,1	68,2	55,9	71,5	7,2	11,4	2,7	4,9	1,6	1,0	0,9

Estación 3061 – Yuquerí Grande - Concordia

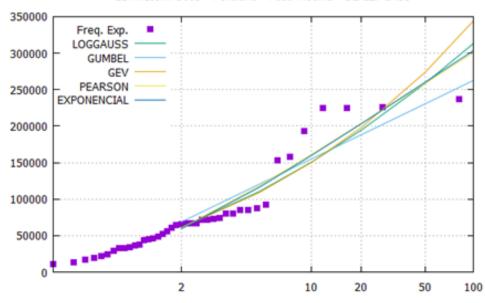
Año hidrologico						Mes	ses					
	9	10	11	12	1	2	3	4	5	6	7	8
1991		2,3	1,7	9,4								
1992					11,0	2,3	4,5	24,4	189,0	2,0	2,0	2,5
1993	2,0	84,7	157,7	76,4	1,3	0,9	0,8	0,7	1,1	4,2	11,7	30,8
1994	7,9	49,6	1,1	9,7	0,7	5,9	19,6	8,5	5,6	0,5	0,6	0,4
1995	0,6	5,4	3,6	0,2	24,4	9,4	9,7	91,5	0,7	0,3	0,3	0,3
1996	0,8	1,4	107,9	0,6	1,4	0,8	0,5	0,8	2,0	0,9	0,7	0,7
1997	1,3	255,1	274,2	181,8	263,2	158,9	227,1	254,3	238,5	173,0	13,6	17,4
1998	115,9	11,4	6,0	8,3	7,4	13,8	6,9	10,4	6,3	116,1	125,7	1,6
1999	1,6	1,6	1,1	0,8	0,8	1,0	9,0	6,3	93,9	14,5	45,4	2,8
2000	25,5		2,6	1,4	16,0	31,3	32,4	30,8	6,4	61,5	1,2	7,7
2001	78,2	114,5	34,0	2,9	1,4	1,9	6,1	110,2	19,4	8,8	27,1	3,1
2002	21,6	100,6	92,6	92,8	23,0	17,9	37,5	102,7	75,5	14,3	6,7	37,6
2003	7,7	17,1	59,8	18,5	5,9	2,0	10,2	26,8	6,3	2,6	6,4	1,7
2004	2,1	3,0	18,3	2,3	1,3	25,8	39,8	152,6	14,7	64,9	25,8	6,9
2005	3,2	6,7	1,0	0,9	1,0	0,8	0,9	1,1	1,2	10,4	5,5	1,0
2006	1,1	7,1	7,6	41,7	36,5	34,5	87,4	26,4	1,1	2,4	2,6	2,4
2007	11,4	20,9	23,5	2,8	2,0	4,0	1,3	0,5	0,8	1,0	0,4	0,5
2008	0,9	125,6	57,3	0,5	0,4	0,6	0,6	0,6	0,5	0,7	2,5	4,0
2009	23,8	11,2	0,0	238,6	39,1	31,5	2,1	0,8	1,3	1,2	3,2	2,5
2010	11,7	5,0	1,4	1,0	1,0	1,2	1,4	1,2	1,0	0,8	0,8	2,6
2011	0,7	2,2	1,6	0,6	0,6	1,4	1,0	0,4	0,6	0,5	0,5	0,5
2012	0,8	253,1	17,2	1,4	5,5	0,8	1,9	1,2	2,7	2,1	1,5	1,5
2013	1,7	6,6	47,1	2,3	0,8	1,6	0,6	44,8	1,7	6,6	34,0	1,8

Estación 3808 - Guayquiraró - Paso Juncue

Año						Me	ses					
hidrologico						1710						
	9	10	11	12	1	2	3	4	5	6	7	8
1975	37,4	30,6	30,0	3,2	27,3	24,6	216,6		44,5	5,9		
1976	1,6	64,0	25,9	128,6	102,5	98,3	158,9	194,4	135,0	49,9	35,6	
1977	5,1	35,6										
1978		135,5		198,2	9,9	9,5	26,7	6,4	6,4	2,0	3,0	
1979	5,5	65,9	124,9	9,9	2,6	45,8	73,6	59,0		8,4	2,9	2,3
1980	3,5	106,4	115,2	106,9	121,3	295,2						
1981			3,0	5,1	5,5			4,6				6,2
1982	150,4	190,6	16,8	48,2	13,6	131,8	62,4	186,3	507,3			
1983											8,7	3,2
1984	30,6	98,7	68,3	5,4	13,2	29,5	56,4	182,6	79,5	60,9	90,9	47,2
1985	8,2	112,8	86,0	0,6	18,1	16,8	35,6	277,5	190,6	139,8	106,9	26,2
1986	116,3	41,5	103,5	39,9	68,7	2,0	36,5	130,2	114,2	39,3	21,1	64,3
1987	6,4	0,5	16,8	0,7	512,8	156,6	11,1	9,2	0,1	4,7	3,2	2,0
1988	20,4	39,6	4,5	21,9	1,9	5,7	12,1	134,4	31,7	0,0	0,0	94,1
1989	21,1	10,2	18,1	2,2	9,2	96,9	182,0	299,1	162,4			
1990	10,0	130,2	114,7	143,7	61,3	24,1	0,6	201,4	126,0	139,8	98,7	45,5
1991	10,8	28,9	3,4	113,2	129,1	12,6	82,9	278,7	361,3	96,4	55,6	12,6
1992	13,0	13,8	14,4	140,4	152,0					39,0	0,8	0,2
1993	0,0	157,2	300,4	57,9	1,5	14,2	10,9	11,9	62,0	11,5	10,4	27,8
1994	28,9	137,1	32,3	9,9	6,8	45,1	262,9	32,3	56,4	1,7	0,3	0,1
1995	0,0	5,4	5,1	1,1	5,4	7,3	32,3	185,1	185,1	1,0	0,1	0,0
1996	0,0	0,8	79,0	2,0	6,5	5,8	4,9	0,6	0,2	0,0	1,1	4,1
1997	13,9	18,0	87,4	247,8	239,8	362,2	229,2	292,8	127,9	164,7	99,0	30,1
1998	108,6	16,5	2,8	17,9	2,1	61,6	8,8	26,5	14,4	111,6	102,1	5,3
1999	0,4	0,7	0,1	0,1	1,7		197,0		86,8	40,7	83,8	3,7
2000	4,6	18,8	53,7	16,1	292,4	287,2	15,0	14,8	77,2	101,7	21,0	52,0
2001	54,6	211,6	118,7	73,1	3,2	0,3	18,2	296,2	215,5	37,8	129,4	16,7
2002	73,0	114,0	75,1	286,5	199,4	9,0	227,4	311,1	197,5	111,9	5,3	16,5
2003	3,5	100,6	56,4	39,6	19,6	1,2	3,1	47,6	13,0	1,9	2,5	0,7
2004	0,6	17,4	65,5	26,8	17,7	198,2	132,6	130,6	57,6	124,9	101,6	6,6
2005	3,2	3,5	3,5	82,1	13,8	27,1	20,9	70,2	0,6	243,6	26,8	0,5
2006	0,4	38,3	45,3	186,3	61,6	18,9	56,9	125,2	128,8	10,8	0,6	0,5
2007	24,4	190,7	203,2	58,6	4,9	32,0	24,9					
2008											0,0	0,4
2009	18,9	4,2	220,0	214,9	75,8	287,6	73,9	41,4	3,3	2,8	2,8	7,1
2010	31,9	2,3	1,0	1,0	1,0	2,7	0,9	2,1	3,5	2,3	1,6	12,2
2011	3,8	231,3	226,2	126,5	63,8	35,6	2,2	3,5	1,5			

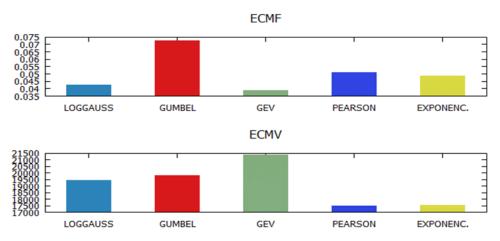
8.3. ANEXO C - SALIDAS DEL PROGRAMA AFMULTI

En este anexo se presentan los resultados de caudal máximo para distintas probabilidades y gráficos de frecuencias experimentales obtenidos para cada cuenca con el software AfMulti.


Cuenca Feliciano - ESTACIÓN 3003: Paso Medina

Estación 3003 - Feliciano - Paso Medina

PROBABILIDAD			CAUDAL		
PRODADILIDAD	LOGGAUSS	GUMBEL	GEV	PEARSON	EXPONENC.
0.01	3130.18	2625.17	3440.11	3005.00	3033.36
0.02	2585.37	2305.45	2737.11	2585.29	2600.69
0.05	1940.70	1878.79	1975.84	2033.14	2028.74
0.1	1504.23	1549.17	1500.88	1610.09	1596.08
0.2	1104.86	1205.54	1091.11	1182.18	1163.42
0.5	612.27	686.53	604.59	601.20	591.47

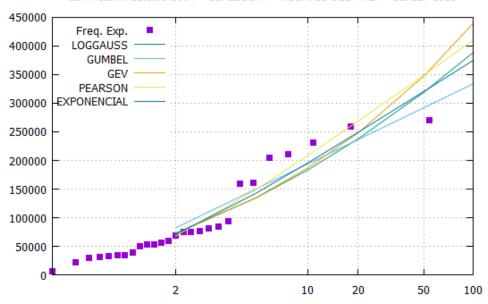

Caudales para distintas probabilidades Cuenca Feliciano

ESTUDIO ESTADISTICO DE: Serie de caudales maximos anuales ESTACION: 3003 - Feliciano - Paso Medina - SERIE: CAUD

Grafico de frecuencias experimentales - Feliciano

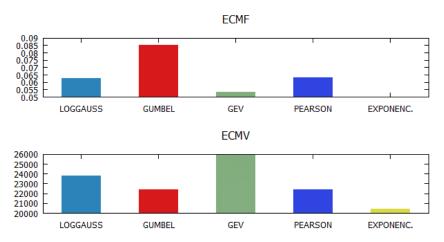
ESTUDIO ESTADISTICO DE: Serie de caudales maximos anuales ESTACION: 3003 - Feliciano - Paso Medina - SERIE: CAUD

Grafica errores cuadráticos medios de frecuencia ECMF y variable ECMV


Cuenca Gualeguay - ESTACIÓN 3004: Rosario del Tala

Estación 3004 - Gualeguay - Rosario del Tala

PROBABILIDAD			CAUDAL		
FRODADILIDAD	LOGGAUSS	GUMBEL	GEV	PEARSON	EXPONENC.
0.01	3877.83	3334.69	4384.44	4092.88	3742.01
0.02	3189.78	2920.24	3471.86	3488.99	3204.57
0.05	2379.71	2367.17	2485.52	2690.17	2494.12
0.1	1834.46	1939.89	1871.34	2085.65	1956.68
0.2	1338.53	1494.44	1342.37	1480.68	1419.25
0.5	732.42	821.65	715.70	679.57	708.79


Caudales para distintas probabilidades Cuenca Gualeguay

ESTADIO ESTADISTICO DE: ESTACION: Estudio 3004 - GUALEGUAY - ROSARIO DEL TALA - SERIE: Caud

Grafico de frecuencias experimentales - Gualeguay

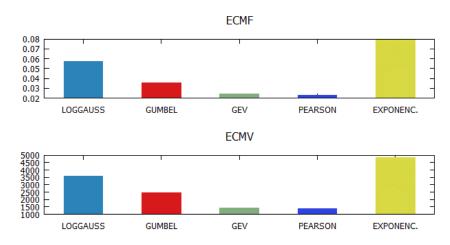
ESTUDIO ESTADISTICO DE: ESTACION: Estudio 3004 - GUALEGUAY - ROSARIO DEL TALA - SERIE: Caud

Grafica errores cuadráticos medios de frecuencia ECMF y variable ECMV

Cuenca Gualeguaychú - ESTACIÓN 3030: RP39

Estación 3030 - RP39 - Gualeguaychú

	111 00 0 0 0 0 0 0 0	guayena			
PROBABILIDAD			CAUDAL		
FRODADILIDAD	LOGGAUSS	GUMBEL	GEV	PEARSON	EXPONENC.
0.01	814.94	795.93	716.52	685.03	838.89
0.02	708.30	706.58	656.36	630.46	731.65
0.05	573.93	587.34	568.14	551.69	589.88
0.1	476.12	495.22	493.20	484.75	482.64
0.2	379.69	399.19	408.16	407.49	375.40
0.5	246.27	254.14	264.93	270.98	233.63


Caudales para distintas probabilidades Cuenca Gualeguaychú

ESTUDIO ESTADISTICO DE: ESTACION: 3030 - RP 39 - Gualeguaychu - SERIE: CAUD

Grafico de frecuencias experimentales - Gualeguaychú

ESTUDIO ESTADISTICO DE: ESTACION: 3030 - RP 39 - Gualeguaychu - SERIE: CAUD

Grafica errores cuadráticos medios de frecuencia ECMF y variable ECMV

Cuenca Nogoyá -ESTACIÓN 3037: RP11

Estación 3037 - RP11 - Nogoyá

PROBABILIDAD			CAUDAL		
PRODADILIDAD	LOGGAUSS	GUMBEL	GEV	PEARSON	EXPONENC.
0.01	1640.17	1241.98	1936.34	1558.06	1522.42
0.02	1281.41	1078.62	1406.99	1308.22	1287.53
0.05	884.89	860.61	900.50	980.53	977.02
0.1	636.88	692.19	622.63	735.52	742.13
0.2	427.64	516.61	408.49	494.55	507.23
0.5	199.59	251.41	187.88	188.51	196.72

Caudales para distintas probabilidades Cuenca Nogoyá

ESTUDIO ESTADISTICO DE: ESTACION: Estacion 3037 - Nogoya - SERIE: Caud

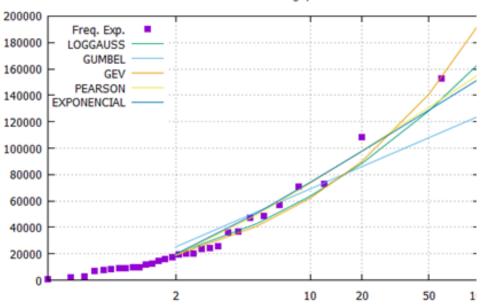
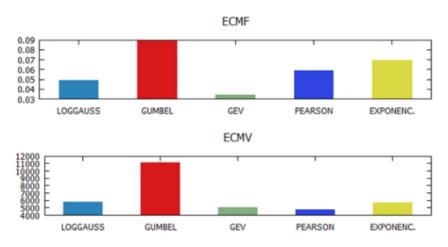
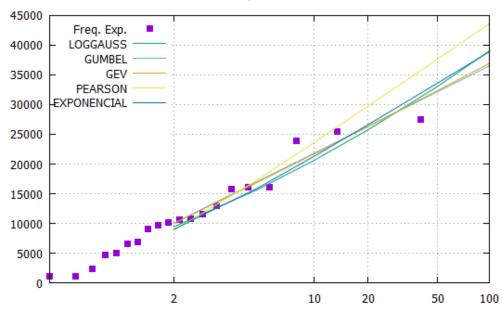



Grafico de frecuencias experimentales - Nogoyá

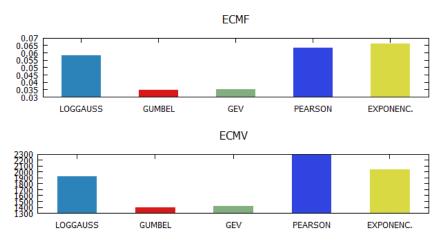
ESTUDIO ESTADISTICO DE: ESTACION: Estacion 3037 - Nogoya - SERIE: Caud

Grafica errores cuadráticos medios de frecuencia ECMF y variable ECMV


Cuenca Yuquerí Grande - ESTACIÓN 3061: Concordia

Estación 3061 - Yuguerí Grande - Concordia

PROBABILIDAD			CAUDAL		
FRODADILIDAD	LOGGAUSS	GUMBEL	GEV	PEARSON	EXPONENC.
0.01	390.52	365.36	369.56	436.49	389.19
0.02	330.64	321.68	323.59	376.48	336.23
0.05	257.59	263.40	263.18	297.42	266.21
0.1	206.36	218.37	217.22	236.40	213.24
0.2	157.76	171.43	169.96	174.19	160.27
0.5	94.37	100.52	99.82	88.12	90.26

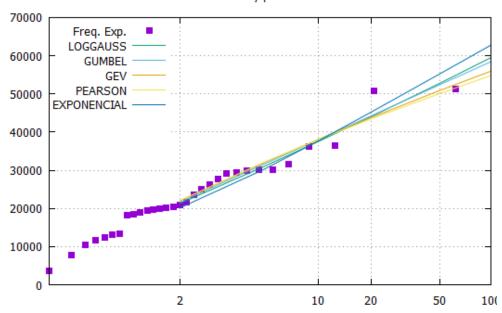

Caudales para distintas probabilidades Cuenca Yuquerí Grande

ESTUDIO ESTADISTICO DE: ESTACION: Estacion 3061 - Yuqueri Grande - Concordia - SERIE: Caud

Grafico de frecuencias experimentales - Yuquerí Grande

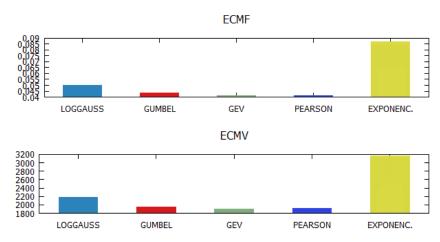
ESTUDIO ESTADISTICO DE: ESTACION: Estacion 3061 - Yuqueri Grande - Concordia - SERIE: Caud

Grafica errores cuadráticos medios de frecuencia ECMF y variable ECMV


Cuenca Guayquiraró - Estación 3808: Paso Juncue

Estación 3808 - Guayquiraró - Paso Juncue

	7 1				
PROBABILIDAD			CAUDAL		
FRODABILIDAD	LOGGAUSS	GUMBEL	GEV	PEARSON	EXPONENC.
0.01	594.83	584.14	559.40	547.94	627.47
0.02	527.38	523.52	508.65	500.79	551.98
0.05	440.29	442.61	437.85	434.61	452.18
0.1	375.07	380.11	380.64	380.30	376.69
0.2	308.87	314.95	318.57	320.03	301.20
0.5	213.03	216.53	219.89	220.87	201.41


Caudales para distintas probabilidades Cuenca Guayquiraró

ESTUDIO ESTADISTICO DE: ESTACION: Estacion 3808 - Guayquiraro - Paso Juncue - SERIE: CAUD

Grafico de frecuencias experimentales - Guayquiraró

ESTUDIO ESTADISTICO DE: ESTACION: Estacion 3808 - Guayquiraro - Paso Juncue - SERIE: CAUD

Grafica errores cuadráticos medios de frecuencia ECMF y variable ECMV

8.4. ANEXO D – VALORES DE CAUDALES MÁXIMOS DE SUBCUENCAS MODELADAS

En este Anexo se presentan los valores de caudales máximos de las subcuencas del arroyo Feliciano y río Gualeguaychú para las recurrencias de 2, 5, 10, 20, 50 y 100 años.

Subcuenca	Α	TR	Q
	km²	Años	m³/s
Pertenecientes al arroyo Feliciano	1 1 1 1 1	7	, 0
F_C18_2_Arroyo Tases	80	2	47
1 _0 10_2_, iii 0 y 0 1 4 0 0 0		5	67
		10	85
		20	107
		50	140
		100	167
F_C12_1_Arroyo Estacas Este	216	2	111
0 w. oye _c.a.cac _c.a		5	163
		10	211
		20	267
		50	355
		100	427
F_C15-1_Arroyo Tuna	228	2	118
5.5 9,5 . 4.14		5	173
		10	224
		20	282
		50	377
		100	446
F_2_Junction_9	616	2	229
- <u></u>		5	346
		10	479
		20	612
		50	823
		100	984
F_2_Junction_11	322	2	112
		5	146
		10	181
		20	233
		50	330
		100	407
F_3_Junction_2	1.095	2	299
		5	421
		10	526
		20	624
		50	799
		100	932
F_3_Junction_7	740	2	199
		5	288
		10	358
		20	429
		50	547
		100	637
F_4_Junction_16	753	2	247
		5	329
	1	10	411

Subcuenca	Α	TR	Q
	km²	Años	m³/s
		20	491
		50	617
		100	711
F_4_Junction_4	1.444	2	334
		5	511
		10	642
		20	783
		50	1.041
		100	1.237
F_5_Junction_7	2.437	2	622
		5	945
		10	1.177
		20	1.404
		50	1.814
	0.504	100	2.116
F_7_Junction_10	3.521	2	687
		5	1.060
		10	1.329
		20 50	1.613 2.019
		100	2.361
F_10_Junction_13	4.620	2	765
F_10_3unction_13	4.020	5	1.216
		10	1.531
		20	1.852
		50	2.304
		100	2.689
F_13_Junction_17	6.848	2	1.036
		5	1.573
		10	1.981
		20	2.464
		50	3.101
		100	3.643
F_15_Junction_22	8.210	2	1.361
		5	1.990
		10	2.480
		20	3.053
		50	3.798
		100	4.429
F_14_Junction_21	7.145	2	1.103
		5	1.653
		10	2.091
		20 50	2.589
		50	3.251 3.814
		100	5.014

Subcuenca	Α	TR	Q
Gubcuerica	km²	Años	m³/s
	5.555	2	831
		5	1.332
F_12_Paso_Medina		10	1.662
		20	2.027
		50	2.504
Parte a signitar al ría Cuala su such á		100	2.930
Pertenecientes al río Gualeguaychú	400	_	40
G_CP01W92	168	2	19
		5	40
		10	59 70
		20	79
		50	117
C CD00M444	460	100	146
G_CP02W141	169	2 5	26 50
			50 70
		10	72
		20	96
		50	139
C CD03W450	2005	100	172
G_CP03W150	265	2	42
		5	79
		10 20	113 148
		50 50	212
		100	260
C CD00W530	322		46
G_CP09W530	322	2 5	89
		10	128
			167
		20 50	239
		100	296
G_CP14W860	370	2	84
0_01 140000	370	5	153
		10	212
		20	274
		50 50	385
		100	469
G_CP12W680	396	2	69
J_01 12 7 7 000	390	5	121
		10	161
		20	212
		50 50	297
		100	366
G_CP14W950	703	2	137
<u> </u>	, 55	5	243
		10	336
I		1 10	330

Subcuenca	Α	TR	Q
	km²	Años	m³/s
		20	433
		50	592
		100	718
G_CP16W1050	271	2	48
		5	90
		10	124
		20	154
		50	218
		100	270
G_CP08W450	907	2	123
		5	222
		10	312
		20	403
		50	539
0.0040141500	4.000	100	653
G_CP10W580	1.302	2	177
		5	307
		10	423
		20	538
		50 100	681 810
C CD06W224	1 606		
G_CP06W331	1.686	2 5	210 338
		10	419
		20	505
		50	613
		100	689
G_CP07W440	2.280	2	234
S_01 07 W H0	2.200	5	386
		10	472
		20	572
		50	680
		100	755
G_CP10W600	3.673	2	383
_		5	618
		10	740
		20	879
		50	1.015
		100	1.098
G_CP11W740	4.762	2	445
		5	743
		10	939
		20	1.028
		50	1.250
		400	1.439
		100	

Subcuenca	Α	TR	Q
	km²	Años	m³/s
G_CP13W870	5.094	2	461
		5	761
		10	956
		20	1.036
		50	1.250
		100	1.428
G_CP15W1000	6.971	2	667
		5	1.048
		10	1.279
		20	1.371
		50	1.580
		100	1.782
G_CP15W1040	6.385	2	620
		5	993
		10	1.222
		20	1.310
		50	1.530
		100	1.738
G_CP15W1030	6.661	2	640
		5	1.011
		10	1.239
		20	1.328
		50	1.542
		100	1.749

8.5. ANEXO E - VALORES DE PMA DE CUENCAS Y SUBCUENCAS

En este anexo se presentan los valores de duración de tormenta y PMA para las cuencas aforadas y subcuencas modeladas para las distintas recurrencias adoptadas.

PMA para 2 años de recurrencia:

Cuenca	Área	Recurrencia	Duración tormenta	PMA
	km²	años	días	mm
Guayquiraró	3074	2	6	197
Yuquerí Grande	677	2	2	120
Gualeguay	16038	2	26	236
Gualeguaychú	2029	2	6	142
Feliciano	5573	2	8	179
Nogoyá	3873	2	6	153
F_C18_2_Arroyo Tases	80	2	1,5	134
F_C12_1_Arroyo Estacas Este	216	2	1,5	134
F_C15-1_Arroyo Tuna	228	2	2	141
F_2_Junction_9	616	2	2	138
F_2_Junction_11	322	2	2	138
F_3_Junction_2	1095	2	3	151
F_3_Junction_7	740	2	3	151
F_4_Junction_16	753	2	4	162
F_4_Junction_4	1444	2	3	162
F_5_Junction_7	2437	2	6	178
F_7_Junction_10	3521	2	8	179
F_10_Junction_13	4620	2	10	191
F_13_Junction_17	6848	2	12	201
F_15_Junction_22	8210	2	12	200
F_14_Junction_21	7145	2	12	201
F_12_Paso_Medina	5555	2	12	201
G_CP01W92	168	2	1,5	99
G_CP02W141	169	2	1,5	99
G_CP03W150	265	2	1,5	99
G_CP09W530	322	2	2	106
G_CP14W860	370	2	1,5	99
G_CP12W680	396	2	2	104
G_CP14W950	703	2	2	104
G_CP16W1050	271	2	1,5	95
G_CP08W450	907	2	3	116
G_CP10W580	1302	2	4	126
G_CP06W331	1686	2	4,5	130
G_CP07W440	2280	2	6	141
G_CP10W600	3673	2	6	140
G_CP11W740	4762	2	7,5	149
G_CP13W870	5094	2	8	152
G_CP15W1000	6971	2	9	159
G_CP15W1040	6385	2	9	159
G_CP15W1030	6661	2	9	159

PMA para 5 años de recurrencia:

Cuenca	Área	Recurrencia	Duración tormenta	PMA
	km2	años	días	mm
Guayquiraró	3074	5	6	224
Yuquerí Grande	677	5	2	166
Gualeguay	16038	5	26	318
Gualeguaychú	2029	5	6	183
Feliciano	5573	5	8	244
Nogoyá	3873	5	6	194
F_C18_2_Arroyo Tases	80	5	1,5	171
F_C12_1_Arroyo Estacas Este	216	5	1,5	171
F_C15-1_Arroyo Tuna	228	5	2	184
F_2_Junction_9	616	5	2	177
F_2_Junction_11	322	5	2	177
F_3_Junction_2	1095	5	3	196
F_3_Junction_7	740	5	3	196
F_4_Junction_16	753	5	4	213
F_4_Junction_4	1444	5	3	213
F_5_Junction_7	2437	5	6	238
F_7_Junction_10	3521	5	8	242
F_10_Junction_13	4620	5	10	259
F_13_Junction_17	6848	5	12	273
F_15_Junction_22	8210	5	12	271
F_14_Junction_21	7145	5	12	273
F_12_Paso_Medina	5555	5	12	275
G_CP01W92	168	5	1,5	133
G_CP02W141	169	5	1,5	133
G_CP03W150	265	5	1,5	133
G_CP09W530	322	5	2	144
G_CP14W860	370	5	1,5	133
G_CP12W680	396	5	2	138
G_CP14W950	703	5	2	138
G_CP16W1050	271	5	1,5	126
G_CP08W450	907	5	3	153
G_CP10W580	1302	5	4	166
G_CP06W331	1686	5	4,5	166
G_CP07W440	2280	5	6	183
G_CP10W600	3673	5	6	180
G_CP11W740	4762	5	7,5	193
G_CP13W870	5094	5	8	198
G_CP15W1000	6971	5	9	206
G_CP15W1040	6385	5	9	206
G_CP15W1030	6661	5	9	206

PMA para 10 años de recurrencia:

Cuenca	Área	Recurrencia	Duración tormenta	PMA
	km2	años	días	mm
Guayquiraró	3074	10	6	245
Yuquerí Grande	677	10	2	198
Gualeguay	16038	10	26	368
Gualeguaychú	2029	10	6	204
Feliciano	5573	10	8	265
Nogoyá	3873	10	6	227
F_C18_2_Arroyo Tases	80	10	1,5	205
F_C12_1_Arroyo Estacas Este	216	10	1,5	205
F_C15-1_Arroyo Tuna	228	10	2	222
F_2_Junction_9	616	10	2	211
F_2_Junction_11	322	10	2	211
F_3_Junction_2	1095	10	3	232
F_3_Junction_7	740	10	3	232
F_4_Junction_16	753	10	4	252
F_4_Junction_4	1444	10	3	252
F_5_Junction_7	2437	10	6	280
F_7_Junction_10	3521	10	8	284
F_10_Junction_13	4620	10	10	303
F_13_Junction_17	6848	10	12	318
F_15_Junction_22	8210	10	12	315
F_14_Junction_21	7145	10	12	317
F_12_Paso_Medina	5555	10	12	320
G_CP01W92	168	10	1,5	160
G_CP02W141	169	10	1,5	160
G_CP03W150	265	10	1,5	160
G_CP09W530	322	10	2	174
G_CP14W860	370	10	1,5	160
G_CP12W680	396	10	2	164
G_CP14W950	703	10	2	164
G_CP16W1050	271	10	1,5	149
G_CP08W450	907	10	3	183
G_CP10W580	1302	10	4	198
G_CP06W331	1686	10	4,5	185
G_CP07W440	2280	10	6	203
G_CP10W600	3673	10	6	198
G_CP11W740	4762	10	7,5	218
G_CP13W870	5094	10	8	224
G_CP15W1000	6971	10	9	232
G_CP15W1040	6385	10	9	233
G_CP15W1030	6661	10	9	232

PMA para 20 años de recurrencia:

Cuenca	Área	Recurrencia	Duración tormenta	PMA
	km2	años	días	mm
Guayquiraró	3074	20	6	283
Yuquerí Grande	677	20	2	230
Gualeguay	16038	20	26	418
Gualeguaychú	2029	20	6	228
Feliciano	5573	20	8	305
Nogoyá	3873	20	6	259
F_C18_2_Arroyo Tases	80	20	1,5	242
F_C12_1_Arroyo Estacas Este	216	20	1,5	242
F_C15-1_Arroyo Tuna	228	20	2	265
F_2_Junction_9	616	20	2	247
F_2_Junction_11	322	20	2	247
F_3_Junction_2	1095	20	3	268
F_3_Junction_7	740	20	3	268
F_4_Junction_16	753	20	4	291
F_4_Junction_4	1444	20	3	291
F_5_Junction_7	2437	20	6	319
F_7_Junction_10	3521	20	8	329
F_10_Junction_13	4620	20	10	351
F_13_Junction_17	6848	20	12	368
F_15_Junction_22	8210	20	12	365
F_14_Junction_21	7145	20	12	367
F_12_Paso_Medina	5555	20	12	372
G_CP01W92	168	20	1,5	186
G_CP02W141	169	20	1,5	186
G_CP03W150	265	20	1,5	186
G_CP09W530	322	20	2	202
G_CP14W860	370	20	1,5	186
G_CP12W680	396	20	2	190
G_CP14W950	703	20	2	190
G_CP16W1050	271	20	1,5	173
G_CP08W450	907	20	3	211
G_CP10W580	1302	20	4	227
G_CP06W331	1686	20	4,5	206
G_CP07W440	2280	20	6	226
G_CP10W600	3673	20	6	218
G_CP11W740	4762	20	7,5	229
G_CP13W870	5094	20	8	234
G_CP15W1000	6971	20	9	241
G_CP15W1040	6385	20	9	242
G_CP15W1030	6661	20	9	242

PMA para 50 años de recurrencia:

Cuenca	Área	Recurrencia	Duración tormenta	PMA
	km2	años	días	mm
Guayquiraró	3074	50	6	361
Yuquerí Grande	677	50	2	272
Gualeguay	16038	50	26	482
Gualeguaychú	2029	50	6	253
Feliciano	5573	50	8	386
Nogoyá	3873	50	6	300
F_C18_2_Arroyo Tases	80	50	1,5	242
F_C12_1_Arroyo Estacas Este	216	50	1,5	242
F_C15-1_Arroyo Tuna	228	50	2	265
F_2_Junction_9	616	50	2	305
F_2_Junction_11	322	50	2	305
F_3_Junction_2	1095	50	3	328
F_3_Junction_7	740	50	3	328
F_4_Junction_16	753	50	4	355
F_4_Junction_4	1444	50	3	355
F_5_Junction_7	2437	50	6	388
F_7_Junction_10	3521	50	8	391
F_10_Junction_13	4620	50	10	415
F_13_Junction_17	6848	50	12	434
F_15_Junction_22	8210	50	12	428
F_14_Junction_21	7145	50	12	432
F_12_Paso_Medina	5555	50	12	440
G_CP01W92	168	50	1,5	230
G_CP02W141	169	50	1,5	230
G_CP03W150	265	50	1,5	230
G_CP09W530	322	50	2	250
G_CP14W860	370	50	1,5	230
G_CP12W680	396	50	2	231
G_CP14W950	703	50	2	231
G_CP16W1050	271	50	1,5	211
G_CP08W450	907	50	3	251
G_CP10W580	1302	50	4	263
G_CP06W331	1686	50	4,5	229
G_CP07W440	2280	50	6	250
G_CP10W600	3673	50	6	237
G_CP11W740	4762	50	7,5	256
G_CP13W870	5094	50	8	261
G_CP15W1000	6971	50	9	263
G_CP15W1040	6385	50	9	266
G_CP15W1030	6661	50	9	265

PMA para 100 años de recurrencia:

Cuenca	Área	Recurrencia	Duración tormenta	PMA
	km2	años	días	mm
Guayquiraró	3074	100	6	391
Yuquerí Grande	677	100	2	305
Gualeguay	16038	100	26	525
Gualeguaychú	2029	100	6	270
Feliciano	5573	100	8	369
Nogoyá	3873	100	6	330
F_C18_2_Arroyo Tases	80	100	1,5	346
F_C12_1_Arroyo Estacas Este	216	100	1,5	346
F_C15-1_Arroyo Tuna	228	100	2	384
F_2_Junction_9	616	100	2	348
F_2_Junction_11	322	100	2	348
F_3_Junction_2	1095	100	3	373
F_3_Junction_7	740	100	3	373
F_4_Junction_16	753	100	4	403
F_4_Junction_4	1444	100	3	403
F_5_Junction_7	2437	100	6	438
F_7_Junction_10	3521	100	8	442
F_10_Junction_13	4620	100	10	470
F_13_Junction_17	6848	100	12	489
F_15_Junction_22	8210	100	12	481
F_14_Junction_21	7145	100	12	487
F_12_Paso_Medina	5555	100	12	497
G_CP01W92	168	100	1,5	262
G_CP02W141	169	100	1,5	262
G_CP03W150	265	100	1,5	262
G_CP09W530	322	100	2	287
G_CP14W860	370	100	1,5	262
G_CP12W680	396	100	2	262
G_CP14W950	703	100	2	262
G_CP16W1050	271	100	1,5	239
G_CP08W450	907	100	3	283
G_CP10W580	1302	100	4	293
G_CP06W331	1686	100	4,5	246
G_CP07W440	2280	100	6	266
G_CP10W600	3673	100	6	248
G_CP11W740	4762	100	7,5	277
G_CP13W870	5094	100	8	281
G_CP15W1000	6971	100	9	284
G_CP15W1040	6385	100	9	287
G_CP15W1030	6661	100	9	285

8.6. ANEXO F - VALORES DE LAS VARIABLES ANALIZADAS

En este Anexo se presentan los valores analizados de las variables y Parámetros de las cuencas aforadas y subcuencas. En la primera tabla se presentan los valores para las variables que no varían con la recurrencia (A. i, P, Kc, Lc, Tc, R, λ). En las demás tablas se presentan los valores de caudal máximo y PMA para cada recurrencia.

Cuonos	Λ	:	В	V-0	Lo	To	В	λ.
Cuenca	Α	i	Р	Kc	Lc	Tc (Illinois)	R (Clark)	λ Lambda
	km²	m/m	km		km	h	(Olark)	Lambaa
Gualeguay	16.038	0,00009	1.350,41	3,01	495,74	266,25	213,23	0,44
F_13_Junction_17	6.848	0,00024	464,80	1,57	228,91	108,04	74,57	0,69
F_15_Junction_22	8.210	0,00024	523,61	1,62	268,49	122,26	78,89	0,65
F_14_Junction_21	7.145	0,00024	479,22	1,59	251,29	117,74	79,27	0,67
F_12_Paso_Medina	5.555	0,00021	401,93	1,51	210,43	99,83	70,37	0,70
G_CP12W680	396	0,00101	140,78	2,00	43,48	20,35	13,48	0,40
G_CP03W150	265	0,00096	128,23	2,22	28,05	14,33	21,44	0,60
G_CP02W141	170	0,00101	90,41	1,96	22,67	11,78	19,12	0,62
G CP09W530	322	0,00104	132,73	2,09	39,35	19,00	22,61	0,54
G_CP14W860	370	0,00160	121,31	1,78	31,24	14,36	14,89	0,51
G_CP14W950	703	0,00125	169,26	1,80	44,63	20,02	11,48	0,36
G_CP16W1050	271	0,00154	112,94	1,94	33,86	15,16	8,90	0,37
Yuquerí Grande	677	0,00117	214,45	2,32	50,67	22,65	12,64	0,36
G_CP01W92	168	0,00092	104,41	2,27	25,96	13,49	21,55	0,62
Gualeguaychú	2.029	0,00042	419,99	2,63	113,52	55,18	37,29	0,40
G_CP07W440	2.281	0,00043	443,86	2,62	124,27	59,44	37,65	0,39
G_CP10W580	1.302	0,00059	313,89	2,45	79,08	37,82	25,19	0,40
G_CP06W331	1.687	0,00049	321,27	2,21	86,60	42,48	30,51	0,42
G_CP08W450	907	0,00063	239,40	2,24	64,72	31,37	22,36	0,42
F_2_Junction_9	616	0,00065	122,25	1,38	49,04	22,38	19,86	0,89
F_C12_1_Arroyo Estacas Este	216	0,00069	67,82	1,29	31,66	15,60	16,27	1,00
F_2_Junction_11	322	0,00065	99,05	1,55	49,21	22,47	19,94	0,89
F_C18_2_Arroyo Tases	80	0,00058	47,16	1,48	23,19	13,14	16,82	1,00
F_C15-1_Arroyo Tuna	228	0,00058	71,53	1,33	28,67	15,54	18,25	1,00
G_CP11W740	4.763	0,00039	607,64	2,48	154,50	73,17	43,75	0,37
G_CP13W870	5.096	0,00039	657,67	2,60	176,30	82,47	46,62	0,36
Nogoyá	3.873	0,00052	523,52	2,36	136,96	62,58	33,61	0,35
G_CP10W600	3.674	0,00044	522,05	2,43	135,36	64,02	38,67	0,38
Guayquiraró	3.074	0,00036	677,27	2,84	129,54	63,65	43,93	0,41
F_4_Junction_4	1.444	0,00038	178,56	1,32	75,99	38,54	35,24	0,91
F_4_Junction_16	753	0,00048	164,78	1,68	77,62	35,97	29,78	0,83
F_3_Junction_2	1.095	0,00040	155,63	1,32	56,93	30,19	30,52	1,00
F_3_Junction_7	740	0,00044	125,43	1,29	63,33	31,65	29,47	0,93
G_CP15W1000	6.974	0,00037	740,37	2,50	195,91	91,24	50,21	0,35
G_CP15W1040	6.388	0,00038	709,80	2,51	184,06	85,86	47,84	0,36
G_CP15W1030	6.664	0,00037	726,85	2,51	191,05	89,08	49,35	0,36
F_5_Junction_7	2.437	0,00026	244,55	1,39	102,28	51,10	43,50	0,85
F_7_Junction_10	3.521	0,00022	317,81	1,50	150,47	74,26	69,00	0,93
Feliciano	5.573	0,00024	732,03	2,75	151,46	78,41	63,39	0,45
F_10_Junction_13	4.620	0,00022	375,34	1,55	190,63	90,40	64,91	0,72

117

Cuenca	Q	Α	PMA
	2 años		2 años
	m ³ /s	km ²	mm
Gualeguay	716	16.038	236
F_13_Junction_17	1.036	6.848	201
F_15_Junction_22	1.361	8.210	200
F_14_Junction_21	1.103	7.145	201
F_12_Paso_Medina	831	5.555	201
G_CP12W680	69	396	104
G_CP03W150	42	265	99
G_CP02W141	26	170	99
G_CP09W530	46	322	106
G_CP14W860	84	370	99
G_CP14W950	137	703	104
G_CP16W1050	48	271	95
Yuquerí Grande	100	677	120
G_CP01W92	19	168	99
Gualeguaychú	265	2.029	142
G_CP07W440	234	2.281	141
G_CP10W580	177	1.302	126
G_CP06W331	210	1.687	130
G_CP08W450	123	907	116
F_2_Junction_9	229	616	138
F_C12_1_Arroyo Estacas Este	111	216	134
F_2_Junction_11	112	322	138
F_C18_2_Arroyo Tases	47	80	134
F_C15-1_Arroyo Tuna	118	228	141
G_CP11W740	445	4.763	149
G_CP13W870	461	5.096	152
Nogoyá	188	3.873	153
G_CP10W600	383	3.674	140
Guayquiraró	220	3.074	197
F_4_Junction_4	334	1.444	162
F_4_Junction_16	247	753	162
F_3_Junction_2	299	1.095	151
F_3_Junction_7	199	740	151
G_CP15W1000	667	6.974	159
G_CP15W1040	620	6.388	159
G_CP15W1030	640	6.664	159
F_5_Junction_7	622	2.437	178
F_7_Junction_10	687	3.521	179
Feliciano	601	5.573	179
F_10_Junction_13	765	4.620	191

118

	0	I a I	D144
Cuenca	Q 5 años	Α	PMA 5 años
	m ³ /s	km²	mm
Gualeguay	1.342	16.038	318
F_13_Junction_17	1.573	6.848	273
F_15_Junction_22	1.990	8.210	271
F_14_Junction_21	1.653	7.145	273
F_12_Paso_Medina	1.332	5.555	275
G_CP12W680	121	396	138
G_CP03W150	79	265	133
G_CP02W141	50	170	133
G_CP09W530	89	322	144
G_CP14W860	153	370	133
G_CP14W950	243	703	138
G_CP16W1050	90	271	126
Yuquerí Grande	170	677	166
G_CP01W92	40	168	133
Gualeguaychú	408	2.029	183
G_CP07W440	386	2.281	183
G_CP10W580	307	1.302	166
G_CP06W331	338	1.687	166
G_CP08W450	222	907	153
F_2_Junction_9	346	616	177
F_C12_1_Arroyo	163	216	171
Estacas Este			
F_2_Junction_11	146	322	177
F_C18_2_Arroyo	67	80	171
Tases F_C15-1_Arroyo	173	228	184
Tuna	173	220	104
G_CP11W740	743	4.763	193
G_CP13W870	761	5.096	198
Nogoyá	408	3.873	194
G_CP10W600	618	3.674	180
Guayquiraró	319	3.074	224
F_4_Junction_4	511	1.444	213
F_4_Junction_16	329	753	213
F_3_Junction_2	421	1.095	196
F_3_Junction_7	288	740	196
G_CP15W1000	1.048	6.974	206
G_CP15W1040	993	6.388	206
G_CP15W1030	1.011	6.664	206
F_5_Junction_7	945	2.437	238
F_7_Junction_10	1.060	3.521	242
Feliciano	1.182	5.573	244
F_10_Junction_13	1.216	4.620	259

Cuenca	Q	Α	PMA
	10 años		10 años
	m³/s	km ²	mm
Gualeguay	1.871	16.038	368
F_13_Junction_17	1.981	6.848	318
F_15_Junction_22	2.480	8.210	315
F_14_Junction_21	2.091	7.145	317
F_12_Paso_Medina	1.662	5.555	320
G_CP12W680	161	396	164
G_CP03W150	113	265	160
G_CP02W141	72	170	160
G_CP09W530	128	322	174
G_CP14W860	212	370	160
G_CP14W950	336	703	164
G_CP16W1050	124	271	149
Yuquerí Grande	217	677	198
G_CP01W92	59	168	160
Gualeguaychú	493	2.029	204
G_CP07W440	472	2.281	203
G_CP10W580	423	1.302	198
G_CP06W331	419	1.687	185
G_CP08W450	312	907	183
F_2_Junction_9	479	616	211
F_C12_1_Arroyo Estacas Este	211	216	205
F_2_Junction_11	181	322	211
F_C18_2_Arroyo Tases	85	80	205
F_C15-1_Arroyo Tuna	224	228	222
G_CP11W740	939	4.763	218
G_CP13W870	956	5.096	224
Nogoyá	623	3.873	227
G_CP10W600	740	3.674	198
Guayquiraró	381	3.074	245
F_4_Junction_4	642	1.444	252
F_4_Junction_16	411	753	252
F_3_Junction_2	526	1.095	232
F_3_Junction_7	358	740	232
G_CP15W1000	1.279	6.974	232
G_CP15W1040	1.222	6.388	233
G_CP15W1030	1.239	6.664	232
F_5_Junction_7	1.177	2.437	280
F_7_Junction_10	1.329	3.521	284
Feliciano	1.610	5.573	265
F_10_Junction_13	1.531	4.620	303

Cuenca	Q	Α	PMA
	20 años		20 años
	m ³ /s	km ²	mm
Gualeguay	2.486	16.038	418
F_13_Junction_17	2.464	6.848	368
F_15_Junction_22	3.053	8.210	365
F_14_Junction_21	2.589	7.145	367
F_12_Paso_Medina	2.027	5.555	372
G_CP12W680	212	396	190
G_CP03W150	148	265	186
G_CP02W141	96	170	186
G_CP09W530	167	322	202
G_CP14W860	274	370	186
G_CP14W950	433	703	190
G_CP16W1050	154	271	173
Yuquerí Grande	263	677	230
G_CP01W92	79	168	186
Gualeguaychú	568	2.029	228
G_CP07W440	572	2.281	226
G_CP10W580	538	1.302	227
G_CP06W331	505	1.687	206
G_CP08W450	403	907	211
F_2_Junction_9	612	616	247
F_C12_1_Arroyo Estacas Este	267	216	242
F_2_Junction_11	233	322	247
F_C18_2_Arroyo Tases	107	80	242
F_C15-1_Arroyo Tuna	282	228	265
G_CP11W740	1.028	4.763	229
G_CP13W870	1.036	5.096	234
Nogoyá	901	3.873	259
G_CP10W600	879	3.674	218
Guayquiraró	438	3.074	283
F_4_Junction_4	783	1.444	291
F_4_Junction_16	491	753	291
F_3_Junction_2	624	1.095	268
F_3_Junction_7	429	740	268
G_CP15W1000	1.371	6.974	241
G_CP15W1040	1.310	6.388	242
G_CP15W1030	1.328	6.664	242
F_5_Junction_7	1.404	2.437	319
F_7_Junction_10	1.613	3.521	329
Feliciano	2.033	5.573	305
F_10_Junction_13	1.852	4.620	351

Cuenca Q 50 años m³/s km² A PMA 50 años mm mm Gualeguay 3.472 16.038 482 F_13_Junction_17 3.101 6.848 434 F_15_Junction_22 3.798 8.210 428 F_14_Junction_21 3.251 7.145 432 F_12_Paso_Medina 2.504 5.555 440 G_CP12W680 297 396 231 G_CP03W150 212 265 230 G_CP09W530 239 322 250 G_CP14W860 385 370 230 G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP01W92 117 168 230 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305		1	1	
Gualeguay 3.472 16.038 482 F_13_Junction_17 3.101 6.848 434 F_15_Junction_22 3.798 8.210 428 F_14_Junction_21 3.251 7.145 432 F_12_Paso_Medina 2.504 5.555 440 G_CP12W680 297 396 231 G_CP03W150 212 265 230 G_CP09W530 239 322 250 G_CP14W860 385 370 230 G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP01W92 117 168 230 G_CP07W440 680 2.281 250 G_CP10W580 681 1.302 263 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_2_Junction_11 330 322 305	Cuenca		Α	PMA
Gualeguay 3.472 16.038 482 F_13_Junction_17 3.101 6.848 434 F_15_Junction_22 3.798 8.210 428 F_14_Junction_21 3.251 7.145 432 F_12_Paso_Medina 2.504 5.555 440 G_CP12W680 297 396 231 G_CP02W141 139 170 230 G_CP09W530 239 322 250 G_CP14W860 385 370 230 G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP16W92 117 168 230 Gualeguaychú 656 2.029 253 G_CP07W440 680 2.281 250 G_CP0W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305			km²	
F_13_Junction_17 3.101 6.848 434 F_15_Junction_22 3.798 8.210 428 F_14_Junction_21 3.251 7.145 432 F_12_Paso_Medina 2.504 5.555 440 G_CP12W680 297 396 231 G_CP03W150 212 265 230 G_CP09W530 239 322 250 G_CP14W860 385 370 230 G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP01W92 117 168 230 G_CP01W92 117 168 230 G_CP10W580 681 1.302 263 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305	Gualeguay			
F_15_Junction_22 3.798 8.210 428 F_14_Junction_21 3.251 7.145 432 F_12_Paso_Medina 2.504 5.555 440 G_CP12W680 297 396 231 G_CP03W150 212 265 230 G_CP09W530 239 322 250 G_CP14W860 385 370 230 G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP01W92 117 168 230 G_CP01W92 117 168 230 G_CP10W580 681 1.302 263 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242				
F_14_Junction_21 3.251 7.145 432 F_12_Paso_Medina 2.504 5.555 440 G_CP12W680 297 396 231 G_CP03W150 212 265 230 G_CP02W141 139 170 230 G_CP09W530 239 322 250 G_CP14W860 385 370 230 G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP16W92 117 168 230 Gualeguaychú 656 2.029 253 G_CP01W92 117 168 230 G_CP10W580 681 1.302 263 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_				_
F_12_Paso_Medina 2.504 5.555 440 G_CP12W680 297 396 231 G_CP03W150 212 265 230 G_CP02W141 139 170 230 G_CP09W530 239 322 250 G_CP14W860 385 370 230 G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP16W92 117 168 230 Gualeguaychú 656 2.029 253 G_CP01W92 117 168 230 G_CP10W580 681 1.302 263 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este				
G_CP12W680 297 396 231 G_CP03W150 212 265 230 G_CP02W141 139 170 230 G_CP09W530 239 322 250 G_CP14W860 385 370 230 G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP16W92 117 168 230 Gualeguaychú 656 2.029 253 G_CP07W440 680 2.281 250 G_CP10W580 681 1.302 263 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este F_2_Junction_11 330 322 305 <				
G_CP03W150 212 265 230 G_CP02W141 139 170 230 G_CP09W530 239 322 250 G_CP14W860 385 370 230 G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP01W92 117 168 230 G_CP10W92 117 168 230 G_CP07W440 680 2.281 250 G_CP06W331 613 1.687 229 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este F_2_Junction_11 330 322 305 F_C18_2_Arroyo 140 80 242 Tases F_C15-1_Arroyo 377 228 265 Tuna G_CP10W600 1.250 4.763 256 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_4_Junction_9 7547 740 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386				
G_CP02W141 139 170 230 G_CP09W530 239 322 250 G_CP14W860 385 370 230 G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP01W92 117 168 230 Gualeguaychú 656 2.029 253 G_CP07W440 680 2.281 250 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este F_2_Junction_11 330 322 305 F_C18_2_Arroyo 140 80 242 Tases F_2_Junction_3 377 228 265 G_CP13W870 1.250 5.096				
G_CP09W530 239 322 250 G_CP14W860 385 370 230 G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP01W92 117 168 230 Gualeguaychú 656 2.029 253 G_CP07W440 680 2.281 250 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este F_2_Junction_11 330 322 305 F_C18_2_Arroyo 140 80 242 Tases F_C15-1_Arroyo 377 228 265 G_CP13W870 1.250 4.763 256 G_CP13W870 1.250 4.763				
G_CP14W860 385 370 230 G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP01W92 117 168 230 Gualeguaychú 656 2.029 253 G_CP07W440 680 2.281 250 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este F_2_Junction_11 330 322 305 F_C18_2_Arroyo 140 80 242 Tases F_C15-1_Arroyo 377 228 265 Tuna G_CP11W740 1.250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407				
G_CP14W950 592 703 231 G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP01W92 117 168 230 Gualeguaychú 656 2.029 253 G_CP07W440 680 2.281 250 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este F_2_Junction_11 330 322 305 F_C18_2_Arroyo 140 80 242 Tases F_C15-1_Arroyo 377 228 265 Tuna 30 322 305 305 F_C18_2_Arroyo 1.250 4.763 256 G_CP11W740 1.250 4.763 256 G_CP11W740 1.250 5.096 261 Nogoá 1.407				
G_CP16W1050 218 271 211 Yuquerí Grande 324 677 272 G_CP01W92 117 168 230 Gualeguaychú 656 2.029 253 G_CP07W440 680 2.281 250 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este F_2_Junction_11 330 322 305 F_C18_2_Arroyo 140 80 242 Tases F_C15-1_Arroyo 377 228 265 Tuna G_CP11W740 1.250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509				
Yuquerí Grande 324 677 272 G_CP01W92 117 168 230 Gualeguaychú 656 2.029 253 G_CP07W440 680 2.281 250 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este F_2_Junction_11 330 322 305 F_C18_2_Arroyo 140 80 242 242 Tases 7_C15-1_Arroyo 377 228 265 Tuna 377 228 265 261 Nogoyá 1.250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró				
G_CP01W92 117 168 230 Gualeguaychú 656 2.029 253 G_CP07W440 680 2.281 250 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este 22 305 305 305 F_C18_2_Arroyo 140 80 242 242 Tases 7_C15-1_Arroyo 377 228 265 265 Tuna 377 228 265 261 242				
Gualeguaychú 656 2.029 253 G_CP07W440 680 2.281 250 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este F_2_Junction_11 330 322 305 F_C18_2_Arroyo 140 80 242 Tases F_C15-1_Arroyo 377 228 265 F_C19-1W740 1.250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_3_Junction_7 547 740 328 G_CP15W1000 1.580	•			
G_CP07W440 680 2.281 250 G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este 22 305 F_C18_2_Arroyo 140 80 242 Tases 377 228 265 F_C15-1_Arroyo 377 228 265 Tuna 377 228 265 G_CP11W740 1.250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_3_Junction_7 547 740 328 G_CP15W1000 <				
G_CP10W580 681 1.302 263 G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este 22 305 F_C18_2_Arroyo 140 80 242 Tases 377 228 265 F_C15-1_Arroyo 377 228 265 Tuna 377 228 265 G_CP11W740 1.250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_3_Junction_7 547 740 328 F_3_Junction_7 547 740 328 G_CP15W1040				
G_CP06W331 613 1.687 229 G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este 22 305 F_C18_2_Arroyo 140 80 242 Tases 377 228 265 F_C15-1_Arroyo 377 228 265 Tuna 377 228 265 G_CP11W740 1.250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_3_Junction_7 547 740 328 F_3_Junction_7 547 740 328 G_CP15W1040 1.530 6.388 266 G_CP15W1030	_			
G_CP08W450 539 907 251 F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este 242 305 F_C18_2_Arroyo 140 80 242 Tases 256 265 F_C15-1_Arroyo 377 228 265 Tuna 377 228 265 G_CP11W740 1.250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_3_Junction_7 547 740 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814<				
F_2_Junction_9 823 616 305 F_C12_1_Arroyo 355 216 242 Estacas Este 242 242 F_2_Junction_11 330 322 305 F_C18_2_Arroyo 140 80 242 Tases 256 265 F_C15-1_Arroyo 377 228 265 Tuna 250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_3_Junction_2 799 1.095 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10				
F_C12_1_Arroyo 355 216 242 Estacas Este 330 322 305 F_C18_2_Arroyo 140 80 242 Tases 228 265 F_C15-1_Arroyo 377 228 265 Tuna 1.250 4.763 256 G_CP11W740 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_3_Junction_16 617 753 355 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Estacas Este 330 322 305 F_C18_2_Arroyo 140 80 242 Tases 377 228 265 F_C15-1_Arroyo 377 228 265 Tuna 377 228 265 G_CP11W740 1.250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_3_Junction_16 617 753 355 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391				
F_2_Junction_11 330 322 305 F_C18_2_Arroyo 140 80 242 Tases 377 228 265 F_C15-1_Arroyo 377 228 265 Tuna 1.250 4.763 256 G_CP11W740 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_3_Junction_16 617 753 355 F_3_Junction_2 799 1.095 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386 <		355	216	242
Tases 228 265 F_C15-1_Arroyo 377 228 265 Tuna 1.250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_4_Junction_16 617 753 355 F_3_Junction_2 799 1.095 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386		330	322	305
F_C15-1_Arroyo 377 228 265 Tuna 1.250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_4_Junction_16 617 753 355 F_3_Junction_2 799 1.095 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386		140	80	242
G_CP11W740 1.250 4.763 256 G_CP13W870 1.250 5.096 261 Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_4_Junction_16 617 753 355 F_3_Junction_2 799 1.095 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386	F_C15-1_Arroyo	377	228	265
Nogoyá 1.407 3.873 300 G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_4_Junction_16 617 753 355 F_3_Junction_2 799 1.095 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386		1.250	4.763	256
G_CP10W600 1.015 3.674 237 Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_4_Junction_16 617 753 355 F_3_Junction_2 799 1.095 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386	G_CP13W870	1.250	5.096	261
Guayquiraró 509 3.074 361 F_4_Junction_4 1.041 1.444 355 F_4_Junction_16 617 753 355 F_3_Junction_2 799 1.095 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386	Nogoyá	1.407	3.873	300
F_4_Junction_4 1.041 1.444 355 F_4_Junction_16 617 753 355 F_3_Junction_2 799 1.095 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386	G_CP10W600	1.015	3.674	237
F_4_Junction_16 617 753 355 F_3_Junction_2 799 1.095 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386	Guayquiraró	509	3.074	361
F_3_Junction_2 799 1.095 328 F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386	F_4_Junction_4	1.041	1.444	355
F_3_Junction_7 547 740 328 G_CP15W1000 1.580 6.974 263 G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386	F_4_Junction_16	617	753	355
G_CP15W1000 1.580 6.974 263 G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386	F_3_Junction_2	799	1.095	328
G_CP15W1040 1.530 6.388 266 G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386	F_3_Junction_7	547	740	328
G_CP15W1030 1.542 6.664 265 F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386	G_CP15W1000	1.580	6.974	263
F_5_Junction_7 1.814 2.437 388 F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386	G_CP15W1040	1.530	6.388	266
F_7_Junction_10 2.019 3.521 391 Feliciano 2.585 5.573 386	G_CP15W1030	1.542	6.664	265
Feliciano 2.585 5.573 386	F_5_Junction_7	1.814	2.437	388
	F_7_Junction_10	2.019	3.521	391
F_10_Junction_13	Feliciano	2.585	5.573	386
	F_10_Junction_13	2.304	4.620	415

Cuenca	Q	Α	PMA
	100 años	. 2	100 años
	m ³ /s	km ²	mm
Gualeguay	4.384	16.038	525
F_13_Junction_17	3.643	6.848	489
F_15_Junction_22	4.429	8.210	481
F_14_Junction_21	3.814	7.145	487
F_12_Paso_Medina	2.930	5.555	497
G_CP12W680	366	396	262
G_CP03W150	260	265	262
G_CP02W141	172	170	262
G_CP09W530	296	322	287
G_CP14W860	469	370	262
G_CP14W950	718	703	262
G_CP16W1050	270	271	239
Yuquerí Grande	370	677	305
G_CP01W92	146	168	262
Gualeguaychú	717	2.029	270
G_CP07W440	755	2.281	266
G_CP10W580	810	1.302	293
G_CP06W331	689	1.687	246
G_CP08W450	653	907	283
F_2_Junction_9	984	616	348
F_C12_1_Arroyo Estacas Este	427	216	346
F_2_Junction_11	407	322	348
F_C18_2_Arroyo Tases	167	80	346
F_C15-1_Arroyo Tuna	446	228	384
G_CP11W740	1.439	4.763	277
G_CP13W870	1.428	5.096	281
Nogoyá	1.936	3.873	330
G_CP10W600	1.098	3.674	248
Guayquiraró	559	3.074	391
F_4_Junction_4	1.237	1.444	403
F_4_Junction_16	711	753	403
F_3_Junction_2	932	1.095	373
F_3_Junction_7	637	740	373
G_CP15W1000	1.782	6.974	284
G_CP15W1040	1.738	6.388	287
G_CP15W1030	1.749	6.664	285
F_5_Junction_7	2.116	2.437	438
F_7_Junction_10	2.361	3.521	442
Feliciano	3.005	5.573	369
F_10_Junction_13	2.689	4.620	470

8.7. ANEXO G – ECUACIONES PARA EL CÁLCULO DE CAUDALES MÁXIMOS

En este Anexo se presentan las ecuaciones obtenidas para cada grupo según la recurrencia de 2, 5, 10, 20, 50 y 100 años con las cuencas aforadas y subcuencas que cumplieron con el requisito de tener diferencia entre el caudal máximo conocido (Q) y caudal máximo estimado menor al 20%.

RECURRENCIA 2 AÑOS

Datos Grupo 1 - TR = 2 años

Nº	Cuenca	Q	Α	In(A)	i	ln(i)	РМА	In(PMA)	In(Caudal Estimado)		Error (%)
3	Gualeguay	716	16.038	9,68	0,00009	-9,34	236	5,46	6,57	716	0,00%
20	F_13_Junction_17	1.036	6.848	8,83	0,00024	-8,34	201	5,30	6,94	1.034	-0,12%
21	F_15_Junction_22	1.361	8.210	9,01	0,00024	-8,33	200	5,30	7,22	1.361	-0,04%
41	F_14_Junction_21	1.103	7.145	8,87	0,00024	-8,34	201	5,30	7,01	1.105	0,16%
42	F_12_Paso_Medina	831	5.555	8,62	0,00021	-8,46	201	5,31	6,72	831	0,00%

Ecuación: $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

 $LN(Q) = 67,64+(1,36) \times LN(A) + (-0,90) \times LN(i) + (-15,14) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 1,36
Y Coeficiente de Pendiente -0,90
W Coeficiente de PMA -15,14
Z Término independiente 67,64

Ecuación regional de caudal Grupo 1 TR 2 años

Datos Grupo 2 - TR = 2 años

Nº	Cuenca	Q	Α	In(A)	i	ln(i)	РМА	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
27 G	_CP12W680	69	396	5,98	0,00101	-6,90	104	4,64	4,15	63	-8,77%
24 G	_CP03W150	42	265	5,58	0,00096	-6,95	99	4,59	3,70	40	-2,76%
23 G	_CP02W141	26	170	5,13	0,00101	-6,89	99	4,59	3,14	23	-10,20%
25 G	_CP09W530	46	322	5,77	0,00104	-6,87	106	4,67	3,84	47	0,96%
26 G	_CP14W860	84	370	5,91	0,00160	-6,44	99	4,59	4,33	76	-9,67%
28 G	_CP14W950	137	703	6,56	0,00125	-6,68	104	4,64	4,98	145	6,42%
29 G	_CP16W1050	48	271	5,60	0,00154	-6,48	95	4,56	3,97	53	10,30%
2 Yu	ıquerí Grande	100	677	6,52	0,00117	-6,75	120	4,78	4,63	102	2,23%
22 G	_CP01W92	19	168	5,12	0,00092	-6,99	99	4,59	3,09	22	14,68%

Ecuación: $LN(Q) = Z + X \times LN(A) + Y \times LN(B) + W \times LN(B)$

 $LN(Q) = 8,10+(1,31) \times LN(A) + (0,37) \times LN(i) + (-2,00) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 1,31
Y Coeficiente de Pendiente 0,37
W Coeficiente de PMA -2,00
Z Término independiente 8,10

Ecuación regional de caudal Grupo 2 TR 2 años

Datos Grupo 3 - TR = 2 años

Νo	Cuence	Q	Α	In/A)		ln(i)	ВΜΛ	In(PMA)	In(Caudal	Caudal	Error
IN	Cuenca	Q	^	In(A)	•	111(1)	LIVIA	III(PIVIA)	Estimado)	Estimado	(%)
4	Gualeguaychú	265	2.029	7,62	0,00042	-7,77	142	4,95	5,49	241	-8,94%
34	G_CP07W440	234	2.281	7,73	0,00043	-7,74	141	4,95	5,58	266	13,62%
32	G_CP10W580	177	1.302	7,17	0,00059	-7,43	126	4,84	5,27	193	9,55%
33	G_CP06W331	210	1.687	7,43	0,00049	-7,63	130	4,87	5,22	184	-12,19%
31	G_CP08W450	123	907	6,81	0,00063	-7,36	116	4,75	4,80	121	-1,56%
11	F_2_Junction_9	229	616	6,42	0,00065	-7,33	138	4,93	5,38	217	-5,26%
9	F_C12_1_Arroyo Estacas Este	111	216	5,38	0,00069	-7,27	134	4,90	4,75	116	4,67%
8	F_C18_2_Arroyo Tases	47	80	4,38	0,00058	-7,45	134	4,90	3,89	49	4,33%
10	F_C15-1_Arroyo Tuna	118	228	5,43	0,00058	-7,46	141	4,95	4,70	109	-7,22%

Ecuación: $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

 $LN(Q) = -8.05 + (0.58) \times LN(A) + (1.63) \times LN(i) + (4.40) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,58
Y Coeficiente de Pendiente 1,63
W Coeficiente de PMA 4,40
Z Término independiente -8,05

Ecuación regional de caudal Grupo 3 TR 2 años

Datos Grupo 4 - TR = 2 años

Nº	Cuenca	Q	A	In(A)	i	ln(i)	PMA	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
6 No	goyá	188	3.873	8,26	0,00052	-7,56	153	5,03	5,24	189	0,34%
1 Gua	ayquiraró	220	3.074	8,03	0,00036	-7,92	197	5,29	5,47	238	8,14%
16 F_4	1_Junction_4	334	1.444	7,28	0,00038	-7,88	162	5,09	5,66	288	-13,91%
15 F_4	_Junction_16	247	753	6,62	0,00048	-7,65	162	5,09	5,36	213	-13,96%
13 F_3	3_Junction_2	299	1.095	7,00	0,00040	-7,81	151	5,02	5,66	288	-3,58%
14 F_3	3_Junction_7	199	740	6,61	0,00044	-7,72	151	5,02	5,55	257	20,00%

Ecuación: $LN(Q) = Z + X \times LN(A) + Y \times LN(B) + W \times LN(B)$

 $LN(Q) = -22,01 + (-0,02) \times LN(A) + (-1,23) \times LN(i) + (3,59) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área -0,03
Y Coeficiente de Pendiente -1,42
W Coeficiente de PMA -1,15
Z Término independiente 0,52

Ecuación regional de caudal Grupo 4 TR 2 años

Datos Grupo 5 - TR = 2 años

Nº	Cuenca	Q	Α	In(A)	i	ln(i)	PMA	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
38 G_	_CP15W1000	667	6.974	8,85	0,00037	-7,91	159	5,07	6,45	634	-4,88%
39 G_	_CP15W1040	620	6.388	8,76	0,00038	-7,87	159	5,07	6,46	636	2,53%
40 G_	_CP15W1030	640	6.664	8,80	0,00037	-7,90	159	5,07	6,45	634	-0,93%
17 F_	5_Junction_7	622	2.437	7,80	0,00026	-8,26	178	5,18	6,47	645	3,74%
18 F_	_7_Junction_10	687	3.521	8,17	0,00022	-8,41	179	5,19	6,47	645	-6,00%
5 Fe	eliciano	601	5.573	8,63	0,00024	-8,32	179	5,19	6,52	678	12,82%
19 F	_10_Junction_13	765	4.620	8,44	0,00022	-8,41	191	5,25	6,58	719	-5,92%

Ecuación: $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

 $LN(Q) = 0.43 + (0.07) \times LN(A) + (0.22) \times LN(i) + (1.41) \times LN(PMA)$

~ " · · ·			
Coeficientes	do la	20112	cion
COCHOICHRES	uc ia	Coua	UIUI I

X Coeficiente de Área 0,07 Y Coeficiente de Pendiente 0,22 W Coeficiente de PMA 1,41 Z Término independiente 0,43

Ecuación regional de caudal Grupo 5 TR 2 años

RECURRENCIA 5 AÑOS

Datos Grupo 1 - TR = 5 años

Nº	Cuenca	Q	Α	In(A)	i	In(i)	РМА	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
3 Gua	aleguay	1.342	16.038	9,68	0,00009	-9,34	318	5,76	7,20	1.342	0,00%
20 F_1	3_Junction_17	1.573	6.848	8,83	0,00024	-8,34	273	5,61	7,36	1.568	-0,32%
21 F_1	5_Junction_22	1.990	8.210	9,01	0,00024	-8,33	271	5,60	7,59	1.988	-0,11%
41 F_1	4_Junction_21	1.653	7.145	8,87	0,00024	-8,34	273	5,61	7,41	1.660	0,44%
42 F_1	2_Paso_Medina	1.332	5.555	8,62	0,00021	-8,46	275	5,62	7,19	1.332	-0,01%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = 63,29 + (0,94) \times LN(A) + (-1,03) \times LN(i) + (-12,99) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,94
Y Coeficiente de Pendiente -1,03
W Coeficiente de PMA -12,99
Z Término independiente 63,29

Ecuación regional de caudal Grupo 1 TR 5 años

Datos Grupo 2 - TR = 5 años

Nº	Cuenca	Q	Α	In(A)	i	ln(i)	РМА	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
27 G	S_CP12W680	121	396	5,98	0,00101	-6,90	138	4,92	4,77	118	-2,58%
24 G	S_CP03W150	79	265	5,58	0,00096	-6,95	133	4,89	4,33	76	-4,05%
23 G	G_CP02W141	50	170	5,13	0,00101	-6,89	133	4,89	3,83	46	-8,13%
25 G	S_CP09W530	89	322	5,77	0,00104	-6,87	144	4,97	4,47	88	-1,65%
26 G	G_CP14W860	153	370	5,91	0,00160	-6,44	133	4,89	4,91	136	-11,08%
28 G	S_CP14W950	243	703	6,56	0,00125	-6,68	138	4,92	5,52	249	2,42%
29 G	S_CP16W1050	90	271	5,60	0,00154	-6,48	126	4,83	4,62	101	12,98%
2 Y	'uquerí Grande	170	677	6,52	0,00117	-6,75	166	5,11	5,17	177	3,90%
22 G	S_CP01W92	40	168	5,12	0,00092	-6,99	133	4,89	3,79	44	10,76%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: LN(Q) = $7.52 + (1.16) \times LN(A) + (0.36) \times LN(i) + (-1.45) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 1,16
Y Coeficiente de Pendiente 0,36
W Coeficiente de PMA -1,45
Z Término independiente 7,52

Ecuación regional de caudal Grupo 2 TR 5 años

Datos Grupo 3 - TR = 5 años

Nº	Cuonos	0	۸	In(A)		ln/i)	ВΜΑ	In(PMA)	In(Caudal	Caudal	Error
IN	Cuenca	Q	Α	In(A)	ı	ln(i)	PIVIA	III(PIVIA)	Estimado)	Estimado	(%)
4	Gualeguaychú	408	2.029	7,62	0,00042	-7,77	183	5,21	5,97	393	-3,65%
34	G_CP07W440	386	2.281	7,73	0,00043	-7,74	183	5,21	6,07	433	12,14%
32	G_CP10W580	307	1.302	7,17	0,00059	-7,43	166	5,11	5,84	345	12,17%
33	G_CP06W331	338	1.687	7,43	0,00049	-7,63	166	5,11	5,68	294	-13,07%
31	G_CP08W450	222	907	6,81	0,00063	-7,36	153	5,03	5,41	224	1,20%
11	F_2_Junction_9	346	616	6,42	0,00065	-7,33	177	5,18	5,77	319	-7,70%
9	F_C12_1_Arroyo Estacas Este	163	216	5,38	0,00069	-7,27	171	5,14	5,10	164	0,85%
8	F_C18_2_Arroyo Tases	67	80	4,38	0,00058	-7,45	171	5,14	4,24	69	3,76%
10	F_C15-1_Arroyo Tuna	173	228	5,43	0,00058	-7,46	184	5,21	5,12	168	-2,89%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: LN (Q) = $-6.97 + (0.60) \times LN (A) + (1.47) \times LN (i) + (3.81) \times LN (PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,6
Y Coeficiente de Pendiente 1,47
W Coeficiente de PMA 3,81
Z Término independiente -6,97

Ecuación regional de caudal Grupo 3 TR 5 años

Datos Grupo 4 - TR = 5 años

Nº	Cuenca	Q	Α	In(A)	i	ln(i)	РМА	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
6 N	logoyá	408	3.873	8,26	0,00052	-7,56	194	5,27	6,10	444	8,73%
35 G	S_CP10W600	618	3.674	8,21	0,00044	-7,74	180	5,19	6,51	672	8,75%
1 G	Suayquiraró	319	3.074	8,03	0,00036	-7,92	224	5,41	5,80	332	4,19%
15 F	_4_Junction_16	329	753	6,62	0,00048	-7,65	213	5,36	5,67	290	-11,83%
13 F	_3_Junction_2	421	1.095	7,00	0,00040	-7,81	196	5,28	6,14	462	9,84%

LN(Q) = Z + Xx LN (A) + Yx LN (i) + Wx LN (PMA)

Ecuación: $LN(Q) = 19,51+(0,09) \times LN(A) + (-0,73) \times LN(i) + (-3,73) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,09
Y Coeficiente de Pendiente -0,73
W Coeficiente de PMA -3,73
Z Término independiente 19,51

Ecuación regional de caudal Grupo 4 TR 5 años

Datos Grupo 5 - TR = 5 años

Nº	Cuenca	Q	Α	In(A)	i	ln(i)	РМА	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
38 G	G_CP15W1000	1.048	6.974	8,85	0,00037	-7,91	206	5,33	6,94	1.028	-1,84%
39 G	S_CP15W1040	993	6.388	8,76	0,00038	-7,87	206	5,33	6,91	1.005	1,17%
40 G	S_CP15W1030	1.011	6.664	8,80	0,00037	-7,90	206	5,33	6,92	1.017	0,56%
17 F	_5_Junction_7	945	2.437	7,80	0,00026	-8,26	238	5,47	6,85	942	-0,23%
18 F	_7_Junction_10	1.060	3.521	8,17	0,00022	-8,41	242	5,49	6,97	1.063	0,28%
5 F	eliciano	1.182	5.573	8,63	0,00024	-8,32	244	5,50	7,08	1.190	0,63%
19 F	_10_Junction_13	1.216	4.620	8,44	0,00022	-8,41	259	5,56	7,10	1.209	-0,54%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = -0.92 + (0.24) \times LN(A) + (-0.11) \times LN(i) + (0.90) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,24
Y Coeficiente de Pendiente -0,11
W Coeficiente de PMA 0,90
Z Término independiente -0,92

Ecuación regional de caudal Grupo 5 TR 5 años

RECURRENCIA 10 AÑOS

Datos Grupo 1 - TR = 10 años

Nº	Cuenca	Q	A	In(A)	i	ln(i)	РМА	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
3	Gualeguay	1.871	16.038	9,68	0,00009	-9,34	368	5,91	7,53	1.871	0,00%
20	F_13_Junction_17	1.981	6.848	8,83	0,00024	-8,34	318	5,76	7,59	1.981	0,02%
21	F_15_Junction_22	2.480	8.210	9,01	0,00024	-8,33	315	5,75	7,82	2.480	0,01%
41	F_14_Junction_21	2.091	7.145	8,87	0,00024	-8,34	317	5,76	7,65	2.091	-0,02%
42	F_12_Paso_Medina	1.662	5.555	8,62	0,00021	-8,46	320	5,77	7,42	1.662	0,00%

LN(Q) = Z + Xx LN (A) + Yx LN (i) + Wx LN (PMA)

Ecuación: $LN(Q) = 54,34 + (0,83) \times LN(A) + (-0,77) \times LN(i) + (-10,52) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,84
Y Coeficiente de Pendiente -0,77
W Coeficiente de PMA -10,52
Z Término independiente 54,34

Ecuación regional de caudal Grupo 1 TR 10 años

Datos Grupo 2 - TR = 10 años

Nº	Cuenca	Q	Α	In(A)	i	ln(i)	PMA	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
27 G	S_CP12W680	161	396	5,98	0,00101	-6,90	164	5,10	5,10	164	1,65%
24 G	S_CP03W150	113	265	5,58	0,00096	-6,95	160	5,07	4,68	108	-4,21%
23 G	G_CP02W141	72	170	5,13	0,00101	-6,89	160	5,07	4,21	67	-7,42%
25 G	S_CP09W530	128	322	5,77	0,00104	-6,87	174	5,16	4,79	120	-5,92%
26 G	S_CP14W860	212	370	5,91	0,00160	-6,44	160	5,07	5,22	185	-12,77%
28 G	S_CP14W950	336	703	6,56	0,00125	-6,68	164	5,10	5,81	332	-1,28%
29 G	S_CP16W1050	124	271	5,60	0,00154	-6,48	149	5,00	4,97	144	16,25%
2 Y	'uquerí Grande	217	677	6,52	0,00117	-6,75	198	5,29	5,45	233	7,48%
22 G	S_CP01W92	59	168	5,12	0,00092	-6,99	160	5,07	4,16	64	9,58%

LN(Q) = Z + Xx LN (A) + Yx LN (i) + Wx LN (PMA)

Ecuación: LN(Q) = $8,67 + (1,10) \times LN(A) + (0,33) \times LN(i) + (-1,55) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 1,11
Y Coeficiente de Pendiente 0,33
W Coeficiente de PMA -1,55
Z Término independiente 8,67

Ecuación regional de caudal Grupo 2 TR 10 años

Datos Grupo 3 - TR = 10 años

Nº	Cuenca	Q	Α	In(A)	i	In(i)	PMA	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
4 Gualeg	uaychú	493	2.029	7,62	0,00042	-7,77	204	5,32	6,16	475	-3,63%
34 G_CP0	7W440	472	2.281	7,73	0,00043	-7,74	203	5,31	6,24	514	8,97%
32 G_CP1	0W580	423	1.302	7,17	0,00059	-7,43	198	5,29	6,13	460	8,61%
33 G_CP0	06W331	419	1.687	7,43	0,00049	-7,63	185	5,22	5,92	374	-10,60%
31 G_CP0	08W450	312	907	6,81	0,00063	-7,36	183	5,21	5,77	320	2,88%
9 F_C12	_1_Arroyo Estacas Este	211	216	5,38	0,00069	-7,27	205	5,32	5,29	198	-6,51%
8 F_C18	_2_Arroyo Tases	85	80	4,38	0,00058	-7,45	205	5,32	4,52	92	7,83%
_10 F_C15	-1_Arroyo Tuna	224	228	5,43	0,00058	-7,46	222	5,40	5,36	212	-5,44%

LN(Q) = Z + Xx LN(A) + Yx LN(i) + Wx LN(PMA)

Ecuación: $LN(Q) = 2,63+(7,43) \times LN(A) + (-7,63) \times LN(i) + (5,22) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 7,43
Y Coeficiente de Pendiente -7,63
W Coeficiente de PMA 5,22
Z Término independiente 2,63

Ecuación regional de caudal Grupo 3 TR 10 años

Datos Grupo 4 - TR = 10 años

Nº	Cuence	Q	Α	In/A)	:	In (i)	РМА	In/DMAN	In(Caudal	Caudal	Error
IN	Cuenca	Q	A	In(A)	•	ln(i)	FIVIA	In(PMA)	Estimado)	Estimado	(%)
36 G	_CP11W740	939	4.763	8,47	0,00039	-7,84	218	5,39	6,70	814	-13,23%
6 No	ogoyá	623	3.873	8,26	0,00052	-7,56	227	5,43	6,52	678	8,82%
1 G	uayquiraró	381	3.074	8,03	0,00036	-7,92	245	5,50	6,00	403	5,81%
15 F ₋	_4_Junction_16	411	753	6,62	0,00048	-7,65	252	5,53	5,90	366	-10,97%
13 F	_3_Junction_2	526	1.095	7,00	0,00040	-7,81	232	5,45	6,38	591	12,42%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: LN(Q) = $41,75+(-0,033) \times LN(A) + (0,19) \times LN(i) + (-6,18) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área -0,03 Y Coeficiente de Pendiente 0,19 W Coeficiente de PMA -6,18 Z Término independiente 41,75

Ecuación regional de caudal Grupo 4 TR 10 años

Datos Grupo 5 - TR = 10 años

Nº Cuenca	Q	Α	In(A)	i	ln(i)	РМА	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
38 G_CP15W1000	1.279	6.974	8,85	0,00037	-7,91	232	5,45	7,16	1.284	0,34%
39 G_CP15W1040	1.222	6.388	8,76	0,00038	-7,87	233	5,45	7,11	1.221	-0,13%
40 G_CP15W1030	1.239	6.664	8,80	0,00037	-7,90	232	5,45	7,14	1.256	1,40%
17 F_5_Junction_7	1.177	2.437	7,80	0,00026	-8,26	280	5,64	7,04	1.144	-2,78%
18 F_7_Junction_10	1.329	3.521	8,17	0,00022	-8,41	284	5,65	7,25	1.409	6,03%
5 Feliciano	1.610	5.573	8,63	0,00024	-8,32	265	5,58	7,34	1.541	-4,26%
_19 F_10_Junction_13	1.531	4.620	8,44	0,00022	-8,41	303	5,71	7,33	1.526	-0,28%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = -0.34 + (0.31) \times LN(A) + (-0.65) \times LN(i) + (-0.07) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,32
Y Coeficiente de Pendiente -0,65
W Coeficiente de PMA -0,08
Z Término independiente -0,34

Ecuación regional de caudal Grupo 5 TR 10 años

RECURRENCIA 20 AÑOS

Datos Grupo 1 - TR = 20 años

Nº	Cuenca	Q	Α	In(A)	i	ln(i)	PMA	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
3 (Gualeguay	2.486	16.038	9,68	0,00009	-9,34	418	6,04	7,82	2.486	0,00%
20 F	13_Junction_17	2.464	6.848	8,83	0,00024	-8,34	368	5,91	7,81	2.462	-0,06%
21 F	15_Junction_22	3.053	8.210	9,01	0,00024	-8,33	365	5,90	8,02	3.053	-0,02%
41 F	14_Junction_21	2.589	7.145	8,87	0,00024	-8,34	367	5,91	7,86	2.591	0,08%
42 F	12_Paso_Medina	2.027	5.555	8,62	0,00021	-8,46	372	5,92	7,61	2.027	0,00%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = 49,24 + (0,75) \times LN(A) + (-0,49) \times LN(i) + (-8,84) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,75
Y Coeficiente de Pendiente -0,49
W Coeficiente de PMA -8,84
Z Término independiente 49,24

Ecuación regional de caudal Grupo 1 TR 20 años

Datos Grupo 2 - TR = 20 años

Nº	Cuenca	Q	Α	In(A)	i	ln(i)	РМА	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
27 G	CP12W680	212	396	5,98	0,00101	-6,90	190	5,25	5,37	215	1,68%
24 G	_CP03W150	148	265	5,58	0,00096	-6,95	186	5,22	4,96	143	-3,26%
23 G	5_CP02W141	96	170	5,13	0,00101	-6,89	186	5,22	4,48	89	-7,49%
25 G	_CP09W530	167	322	5,77	0,00104	-6,87	202	5,31	5,05	156	-6,52%
26 G	_CP14W860	274	370	5,91	0,00160	-6,44	186	5,22	5,45	232	-15,24%
28 G	_CP14W950	433	703	6,56	0,00125	-6,68	190	5,25	6,05	425	-1,91%
29 G	_CP16W1050	154	271	5,60	0,00154	-6,48	173	5,15	5,22	184	19,79%
2 Y	uquerí Grande	263	677	6,52	0,00117	-6,75	230	5,44	5,66	286	8,80%
_22 G	_CP01W92	79	168	5,12	0,00092	-6,99	186	5,22	4,45	86	8,50%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = 9.76 + (1.09) \times LN(A) + (0.22) \times LN(i) + (-1.79) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 1,09
Y Coeficiente de Pendiente 0,22
W Coeficiente de PMA -1,74
Z Término independiente 9,76

Ecuación regional de caudal Grupo 2 TR 20 años

Datos Grupo 3 - TR = 20 años

0	۸	In(A)		In/i)	ВΜΛ	In/DMAA	In(Caudal	Caudal	Error
Q	^	II (A)	'	111(1)	FIVIA	III(FIVIA)	Estimado)	Estimado	(%)
568	2.029	7,62	0,00042	-7,77	228	5,43	6,33	562	-1,01%
572	2.281	7,73	0,00043	-7,74	226	5,42	6,41	608	6,26%
538	1.302	7,17	0,00059	-7,43	227	5,43	6,36	580	7,78%
505	1.687	7,43	0,00049	-7,63	206	5,33	6,11	452	-10,55%
403	907	6,81	0,00063	-7,36	211	5,35	6,03	417	3,53%
267	216	5,38	0,00069	-7,27	242	5,49	5,52	251	-6,02%
107	80	4,38	0,00058	-7,45	242	5,49	4,74	115	7,53%
282	228	5,43	0,00058	-7,46	265	5,58	5,58	266	-5,75%
	538 505 403 267 107	568 2.029 572 2.281 538 1.302 505 1.687 403 907 267 216 107 80	568 2.029 7,62 572 2.281 7,73 538 1.302 7,17 505 1.687 7,43 403 907 6,81 267 216 5,38 107 80 4,38	568 2.029 7,62 0,00042 572 2.281 7,73 0,00043 538 1.302 7,17 0,00059 505 1.687 7,43 0,00049 403 907 6,81 0,00063 267 216 5,38 0,00069 107 80 4,38 0,00058	568 2.029 7,62 0,00042 -7,77 572 2.281 7,73 0,00043 -7,74 538 1.302 7,17 0,00059 -7,43 505 1.687 7,43 0,00049 -7,63 403 907 6,81 0,00063 -7,36 267 216 5,38 0,00069 -7,27 107 80 4,38 0,00058 -7,45	568 2.029 7,62 0,00042 -7,77 228 572 2.281 7,73 0,00043 -7,74 226 538 1.302 7,17 0,00059 -7,43 227 505 1.687 7,43 0,00049 -7,63 206 403 907 6,81 0,00063 -7,36 211 267 216 5,38 0,00069 -7,27 242 107 80 4,38 0,00058 -7,45 242	568 2.029 7,62 0,00042 -7,77 228 5,43 572 2.281 7,73 0,00043 -7,74 226 5,42 538 1.302 7,17 0,00059 -7,43 227 5,43 505 1.687 7,43 0,00049 -7,63 206 5,33 403 907 6,81 0,00063 -7,36 211 5,35 267 216 5,38 0,00069 -7,27 242 5,49 107 80 4,38 0,00058 -7,45 242 5,49	G A In(A) I In(I) PMA In(PMA) Estimado) 568 2.029 7,62 0,00042 -7,77 228 5,43 6,33 572 2.281 7,73 0,00043 -7,74 226 5,42 6,41 538 1.302 7,17 0,00059 -7,43 227 5,43 6,36 505 1.687 7,43 0,00049 -7,63 206 5,33 6,11 403 907 6,81 0,00063 -7,36 211 5,35 6,03 267 216 5,38 0,00069 -7,27 242 5,49 5,52 107 80 4,38 0,00058 -7,45 242 5,49 4,74	G A In(A) I In(I) PMA In(PMA) Estimado) Estimado 568 2.029 7,62 0,00042 -7,77 228 5,43 6,33 562 572 2.281 7,73 0,00043 -7,74 226 5,42 6,41 608 538 1.302 7,17 0,00059 -7,43 227 5,43 6,36 580 505 1.687 7,43 0,00049 -7,63 206 5,33 6,11 452 403 907 6,81 0,00063 -7,36 211 5,35 6,03 417 267 216 5,38 0,00069 -7,27 242 5,49 5,52 251 107 80 4,38 0,00058 -7,45 242 5,49 4,74 115

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = -3,26 + (0,62) \times LN(A) + (0,92) \times LN(i) + (2,21) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,62
Y Coeficiente de Pendiente 0,92
W Coeficiente de PMA 2,21
Z Término independiente -3,26

Ecuación regional de caudal Grupo 3 TR 20 años

Datos Grupo 4 - TR = 20 años

Nº	Cuenca	Q	Α	In(A)	i	In(i)	PMA	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
36 G	CP11W740	1.028	4.763	8,47	0,00039	-7,84	229	5,44	7,00	1.095	6,56%
37 G	CP13W870	1.036	5.096	8,54	0,00039	-7,86	234	5,46	6,90	992	-4,31%
6 N	logoyá	901	3.873	8,26	0,00052	-7,56	259	5,56	6,78	883	-1,90%
1 G	luayquiraró	438	3.074	8,03	0,00036	-7,92	283	5,65	6,09	443	1,09%
15 F	_4_Junction_16	491	753	6,62	0,00048	-7,65	291	5,67	6,23	507	3,40%
13 F	_3_Junction_2	624	1.095	7,00	0,00040	-7,81	268	5,59	6,39	597	-4,35%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = 35,64 + (0,01) \times LN(A) + (0,95) \times LN(i) + (-3,92) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,01
Y Coeficiente de Pendiente 0,95
W Coeficiente de PMA -3,92
Z Término independiente 35,64

Ecuación regional de caudal Grupo 4 TR 20 años

Datos Grupo 5 - TR =20 años

Nº	Cuenca	Q	Α	In(A)	i	ln(i)	РМА	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
38 G	S_CP15W1000	1.371	6.974	8,85	0,00037	-7,91	241	5,49	7,24	1.390	1,38%
39 G	S_CP15W1040	1.310	6.388	8,76	0,00038	-7,87	242	5,49	7,17	1.302	-0,57%
40 G	S_CP15W1030	1.328	6.664	8,80	0,00037	-7,90	242	5,49	7,21	1.353	1,94%
17 F	_5_Junction_7	1.404	2.437	7,80	0,00026	-8,26	319	5,77	7,21	1.347	-4,09%
18 F	_7_Junction_10	1.613	3.521	8,17	0,00022	-8,41	329	5,80	7,47	1.750	8,50%
5 F	eliciano	2.033	5.573	8,63	0,00024	-8,32	305	5,72	7,54	1.873	-7,85%
19 F	_10_Junction_13	1.852	4.620	8,44	0,00022	-8,41	351	5,86	7,54	1.880	1,48%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = -2.61 + (0.32) \times LN(A) + (-1.04) \times LN(i) + (-0.22) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,32
Y Coeficiente de Pendiente -1,04
W Coeficiente de PMA -0,22
Z Término independiente -2,61

Ecuación regional de caudal Grupo 5 TR 20 años

RECURRENCIA 50 AÑOS

Datos Grupo 1 - TR = 50 años

Nº Cuenca	Q	Α	In(A)	i	In(i)	РМА	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
3 Gualeguay	3.472	16.038	9,68	0,00009	-9,34	482	6,18	8,15	3.472	0,00%
20 F_13_Junction_17	3.101	6.848	8,83	0,00024	-8,34	434	6,07	8,04	3.100	-0,01%
21 F_15_Junction_22	3.798	8.210	9,01	0,00024	-8,33	428	6,06	8,24	3.798	0,00%
41 F_14_Junction_21	3.251	7.145	8,87	0,00024	-8,34	432	6,07	8,09	3.252	0,02%
42 F_12_Paso_Medina	2.504	5.555	8,62	0,00021	-8,46	440	6,09	7,83	2.503	0,00%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = 38,71 + (0,70) \times LN(A) + (-0,18) \times LN(i) + (-6,32) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,70
Y Coeficiente de Pendiente -0,18
W Coeficiente de PMA -6,32
Z Término independiente 38,71

Ecuación regional de caudal Grupo 1 TR 50 años

Datos Grupo 2 - TR = 50 años

Nº	Cuenca	Q	Α	In(A)	i	ln(i)	PMA	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
27 G	S_CP12W680	297	396	5,98	0,00101	-6,90	231	5,44	5,71	301	1,50%
24 G	S_CP03W150	212	265	5,58	0,00096	-6,95	230	5,44	5,31	203	-4,02%
23 G	S_CP02W141	139	170	5,13	0,00101	-6,89	230	5,44	4,94	139	0,12%
25 G	S_CP09W530	239	322	5,77	0,00104	-6,87	250	5,52	5,32	204	-14,89%
26 G	_CP14W860	385	370	5,91	0,00160	-6,44	230	5,44	5,96	386	0,18%
28 G	S_CP14W950	592	703	6,56	0,00125	-6,68	231	5,44	6,38	590	-0,37%
2 Y	uquerí Grande	324	677	6,52	0,00117	-6,75	272	5,60	5,86	351	8,58%
22 G	S_CP01W92	117	168	5,12	0,00092	-6,99	230	5,44	4,87	130	11,15%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = 19,50 + (0,93) \times LN(A) + (0,65) \times LN(i) + (-2,73) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,93
Y Coeficiente de Pendiente 0,65
W Coeficiente de PMA -2,73
Z Término independiente 19,50

Ecuación regional de caudal Grupo 2 TR 50 años

Datos Grupo 3 - TR = 50 años

N ₀	Cuence	Q	Α	Im (A)		In (i)	PMA In(PMA)		In(Caudal	Caudal	Error
IN°	Cuenca	· ·		In(A)	ı	ln(i)			Estimado)	Estimado	(%)
4 G	Gualeguaychú	656	2.029	7,62	0,00042	-7,77	253	5,53	6,42	617	-6,01%
34 G	G_CP07W440	680	2.281	7,73	0,00043	-7,74	250	5,52	6,51	673	-1,03%
32 G	S_CP10W580	681	1.302	7,17	0,00059	-7,43	263	5,57	6,53	688	0,92%
33 G	S_CP06W331	613	1.687	7,43	0,00049	-7,63	229	5,44	6,45	633	3,16%
31 G	G_CP08W450	539	907	6,81	0,00063	-7,36	251	5,53	6,40	601	11,48%
9 F_C12_1_Arroyo Estacas Este		355	216	5,38	0,00069	-7,27	242	5,49	5,72	305	-13,91%
8 F_C18_2_Arroyo Tases		140	80	4,38	0,00058	-7,45	242	5,49	5,01	150	7,59%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = 9.37 + (0.53) \times LN(A) + (0.99) \times LN(i) + (0.14) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,53
Y Coeficiente de Pendiente 1,00
W Coeficiente de PMA 0,14
Z Término independiente 9,37

Ecuación regional de caudal Grupo 3 TR 50 años

Datos Grupo 4 - TR = 50 años

Nº	Cuenca	Q	A	In(A)	i	ln(i)	РМА	In(PMA)	In(Caudal Estimado)	Caudal Estimado	Error (%)
36 G_C	1.250	4.763	8,47	0,00039	-7,84	256	5,55	7,20	1.336	6,92%	
37 G_CP13W870 1.		1.250	5.096	8,54	0,00039	-7,86	261	5,56	7,13	1.252	0,13%
6 Nog	joyá	1.407	3.873	8,26	0,00052	-7,56	300	5,70	7,19	1.324	-5,90%
1 Guayquiraró		509	3.074	8,03	0,00036	-7,92	361	5,89	6,25	519	1,98%
15 F_4_Junction_16 6 ⁻⁶		617	753	6,62	0,00048	-7,65	355	5,87	6,54	694	12,42%
13 F_3_Junction_2		799	1.095	7,00	0,00040	-7,81	328	5,79	6,54	692	-13,43%

 $LN(\ Q\)=\ Z+Xx\,LN\,(A)+Yx\,LN\,(i)+W\,\,x\,LN\,(PMA)$

Ecuación: $LN(Q) = 29,99 + (0,076) \times LN(A) + (1,33) \times LN(i) + (-2,35) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,08
Y Coeficiente de Pendiente 1,33
W Coeficiente de PMA -2,35
Z Término independiente 29,99

Ecuación regional de caudal Grupo 4 TR 50 años

Datos Grupo 5 - TR = 50 años

Nº	Cuenca	Q	Α	In(A)		ln(i)	PMA In(PM		PMA In(PMA)		In(Caudal	Caudal	Error
IN.	Cuenca	Q	^	111(74)	•	111(1)	FINIA	III(FIVIA)	Estimado)	Estimado	(%)		
38 (G_CP15W1000	1.580	6.974	8,85	0,00037	-7,91	263	5,57	7,35	1.563	-1,06%		
39 (G_CP15W1040	1.530	6.388	8,76	0,00038	-7,87	266	5,58	7,35	1.554	1,59%		
40 (G_CP15W1030	1.542	6.664	8,80	0,00037	-7,90	265	5,58	7,35	1.555	0,85%		
17 F	5_Junction_7	1.814	2.437	7,80	0,00026	-8,26	388	5,96	7,49	1.797	-0,95%		
18 F	7_Junction_10	2.019	3.521	8,17	0,00022	-8,41	391	5,97	7,60	2.001	-0,90%		
5 F	- eliciano	2.585	5.573	8,63	0,00024	-8,32	386	5,96	7,79	2.420	-6,38%		
19 F	10_Junction_13	2.304	4.620	8,44	0,00022	-8,41	415	6,03	7,81	2.473	7,34%		

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = -3.09 + (0.39) \times LN(A) + (0.33) \times LN(i) + (1.73) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Área 0,39
Y Coeficiente de Pendiente 0,34
W Coeficiente de PMA 1,73
Z Término independiente -3,09

Ecuación regional de caudal Grupo 5 TR 50 años

RECURRENCIA 100 AÑOS

Datos Grupo 1 - TR = 100 años

Nο	Cuonco	Cuenca Q	۸	In(A)		ln(i)	РМА	In(PMA)	In(Caudal	Caudal	Error
111	Cuerica	Q	A		ı	111(1)	FIVIA	III(FIVIA)	Estimado)	Estimado	(%)
3	Gualeguay	4.384	16.038	9,68	0,00009	-9,34	525	6,26	8,39	4.384	0,00%
20	F_13_Junction_17	3.643	6.848	8,83	0,00024	-8,34	489	6,19	8,20	3.643	0,00%
21	21 F_15_Junction_22 4.4		8.210	9,01	0,00024	-8,33	481	6,18	8,40	4.429	0,00%
41	F_14_Junction_21	3.814	7.145	8,87	0,00024	-8,34	487	6,19	8,25	3.814	-0,01%
42	F_12_Paso_Medina	2.930	5.555	8,62	0,00021	-8,46	497	6,21	7,98	2.930	0,00%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = 36,82 + (0,63) \times LN(A) + (-0,05) \times LN(i) + (-5,59) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Area 0,63
Y Coeficiente de Pendiente -0,05
W Coeficiente de PMA -5,59
Z Termino independiente 36,82

Ecuación regional de caudal Grupo 1 TR 100 años

Datos Grupo 2 - TR = 100 años

Nº	Cuenca	Q	Α	In(A)		In(i) PMA In(PMA)	In(Caudal	Caudal	Error		
IN-	Cuenca Q A III(A) I III(I) F		FIVIA	III(FIVIA)	Estimado)	Estimado	(%)				
27 G	_CP12W680	366	396	5,98	0,00101	-6,90	262	5,57	5,91	369	0,94%
24 G	_CP03W150	260	265	5,58	0,00096	-6,95	262	5,57	5,52	250	-3,83%
23 G	_CP02W141	172	170	5,13	0,00101	-6,89	262	5,57	5,17	175	1,93%
25 G	_CP09W530	296	322	5,77	0,00104	-6,87	287	5,66	5,48	241	-18,72%
26 G	_CP14W860	469	370	5,91	0,00160	-6,44	262	5,57	6,15	469	0,05%
28 G	_CP14W950	718	703	6,56	0,00125	-6,68	262	5,57	6,56	704	-1,96%
2 Yu	uquerí Grande	370	677	6,52	0,00117	-6,75	305	5,72	6,04	418	13,17%
22 G	_CP01W92	146	168	5,12	0,00092	-6,99	262	5,57	5,09	163	12,01%

 $LN(\ Q\)=\ Z+Xx\ LN\ (A)+Y\ x\ LN\ (i)+W\ x\ LN\ (PMA)$

Ecuación: $LN(Q) = 21,39 + (0,88) \times LN(A) + (0,65) \times LN(i) + (-2,91) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Area 0,88
Y Coeficiente de Pendiente 0,65
W Coeficiente de PMA -2,91
Z Termino independiente 21,39

Ecuación regional de caudal Grupo 2 TR 100 años

Datos (Grupo 3	3 - TR = ′	100 años
---------	---------	------------	----------

Nο	Cuenca	Q	Α	In(A)	ln(A) i		ВΜΛ	In(PMA)	In(Caudal	Caudal	Error
IN.	Cuenca	Cuenca Q A In(A) i In(i) PMA		III(FIVIA)	Estimado)	Estimado	(%)				
4	Gualeguaychú	717	2.029	7,62	0,00042	-7,77	270	5,60	6,59	727	1,52%
34	G_CP07W440	755	2.281	7,73	0,00043	-7,74	266	5,58	6,66	783	3,75%
32	G_CP10W580	810	1.302	7,17	0,00059	-7,43	293	5,68	6,76	861	6,39%
33	G_CP06W331	689	1.687	7,43	0,00049	-7,63	246	5,50	6,43	619	-10,05%
31	G_CP08W450	653	907	6,81	0,00063	-7,36	283	5,65	6,52	676	3,51%
9	F_C12_1_Arroyo Estacas Este	427	216	5,38	0,00069	-7,27	346	5,85	6,01	407	-4,72%
8	F_C18_2_Arroyo Tases	167	80	4,38	0,00058	-7,45	346	5,85	5,18	178	6,26%
10	F_C15-1_Arroyo Tuna	446	228	5,43	0,00058	-7,46	384	5,95	6,04	422	-5,33%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = -1,018+(0,66) \times LN(A) + (0,94) \times LN(i) + (1,76) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Area 0,66
Y Coeficiente de Pendiente 0,94
W Coeficiente de PMA 1,76
Z Termino independiente -1,02

Ecuación regional de caudal Grupo 3 TR 100 años

Datos Grupo 4 - TR = 100 años

Nº	Cuenca Q A In(A) i In(i)	ВΜΛ	In(PMA)	In(Caudal	Caudal	Error					
IN		Q		111(//)	1	111(1)	FINIA	111(1 100 9	Estimado)	Estimado	(%)
36 G_CP11W740 1.439			4.763	8,47	0,00039	-7,84	277	5,63	7,32	1.505	4,64%
37 G_CP13W870 1.428		1.428	5.096	8,54	0,00039	-7,86	281	5,64	7,22	1.364	-4,49%
6 No	goyá	1.936	3.873	8,26	0,00052	-7,56	330	5,80	7,57	1.933	-0,18%
1 Guayquiraró 559		559	3.074	8,03	0,00036	-7,92	391	5,97	6,33	563	0,60%
_13 F_3	3_Junction_2	932	1.095	7,00	0,00040	-7,81	373	5,92	6,83	928	-0,36%

 $LN(\ Q\)=\ Z+Xx\ LN\ (A)+Y\ x\ LN\ (i)+W\ x\ LN\ (PMA)$

Ecuación: $LN(Q) = 40,75+(-0,137) \times LN(A) + (2,33) \times LN(i) + (-2,49) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Area -0,14
Y Coeficiente de Pendiente 2,33
W Coeficiente de PMA -2,49
Z Termino independiente 40,75

Ecuación regional de caudal Grupo 4 TR 100 años

Datos Grupo 5 - TR = 100 años

Duitos	Grapo o Tik = Tok	o arros									
Nº	Cuenca	Q	Α	In(A)		ln(i)	РМА	In(PMA)	In(Caudal	Caudal	Error
11	Oddilda	ų .		111(74)		111(1)	FIVIA	III(FIVIA)	Estimado)	Estimado	(%)
38 G_CP15W1000 1.782 6.974 8,8				8,85	0,00037	-7,91	284	5,65	7,52	1.836	3,01%
39 G_CP15W1040 1.738 6.388				8,76	0,00038	-7,87	287	5,66	7,44	1.703	-2,00%
40 G_	CP15W1030	1.749	6.664	8,80	0,00037	-7,90	285	5,65	7,49	1.784	2,03%
17 F_	5_Junction_7	2.116	2.437	7,80	0,00026	-8,26	438	6,08	7,61	2.012	-4,89%
18 F_	7_Junction_10	2.361	3.521	8,17	0,00022	-8,41	442	6,09	7,88	2.646	12,05%
5 Feliciano 3.005 5.573 8,		8,63	0,00024	-8,32	369	5,91	7,93	2.786	-7,29%		
19 F_10_Junction_13 2.689 4.620 8,44				8,44	0,00022	-8,41	470	6,15	7,88	2.643	-1,72%

 $LN(Q) = Z + X \times LN(A) + Y \times LN(i) + W \times LN(PMA)$

Ecuación: $LN(Q) = -2.25 + (0.15) \times LN(A) + (-1.56) \times LN(i) + (-0.69) \times LN(PMA)$

Coeficientes de la ecuación

X Coeficiente de Area 0,15
Y Coeficiente de Pendiente -1,56
W Coeficiente de PMA -0,69
Z Termino independiente -2,25

Ecuación regional de caudal Grupo 5 TR 100 años

8.8. ANEXO H - GUÍA DE APLICACIÓN

En este Anexo se presenta una Guía de Aplicación, en la que se desarrolla el procedimiento que debe seguirse para utilizar las fórmulas para el cálculo de caudales máximos en otras cuencas de la provincia de Entre Ríos. También se desarrolla un ejemplo numérico con este procedimiento.

GUÍA DE APLICACIÓN DEL MÉTODO DE ESTIMACIÓN DE CAUDALES MÁXIMOS

La presente guía consiste en una explicación para la determinación del caudal máximo generado en cualquier subcuenca perteneciente a la Provincia de Entre Ríos con un porcentaje de error menor al 20%.

En esta guía se presentarán las ecuaciones para calcular los caudales máximos correspondientes a 2, 5, 10, 20, 50 y 100 años de recurrencia.

DATOS NECESARIOS

Para comenzar a aplicar el método es necesarios obtener previamente algunos parámetros relacionados a la cuenca, los cuales se nombran a continuación:

- A. Área (A)
- B. Pendiente media del curso principal (i)
- C. Longitud de Curso Principal (*Lc*)
- D. Cota inferior (Ci) y cota superior (Cs)
- E. Tiempo de concentración de Kirpich (T_c)

$$Tc = \left(\frac{0.871 \, x \, Lc^3}{\Delta H}\right)^{0.385}$$

Siendo AH la diferencia de cotas.

Otro dato que se debe obtener es la Precipitación Media Areal, cuyo calculo se detalla a continuación.

F. Precipitación Media Areal

CÁLCULO DE LA PRECIPITACIÓN MEDIA AREAL

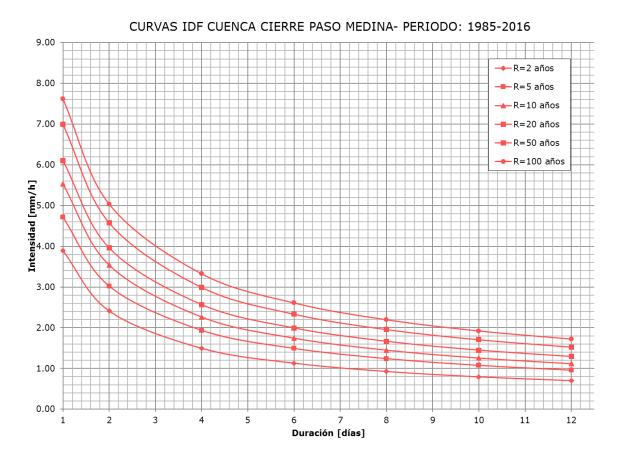
La precipitación media areal se calculará en base al método desarrollado en los proyectos antecedentes "Estudio de tormentas de diseño en las cuencas del arroyo Feliciano y río Gualeguaychú de la provincia de Entre Ríos" (Bonomi et al, 2017) y "Estudio de tormentas de diseño en cuencas extensas de la provincia de Entre Ríos" (López et al, 2019). Para ello se describen los pasos a seguir en orden de manera que sea más fácil el seguimiento.

Cálculo de la duración de la tormenta

En primer lugar, se debe determinar la duración de la tormenta (d), la cual se obtiene en función del tiempo de concentración de la subcuenca analizada. Esta debe la siguiente relación:

$$d = 2 a 3 veces t_c$$

Se recomienda adoptar un valor entero en unidad de tiempo de días, de una magnitud cercana 2,5 veces el tiempo de concentración ya que los métodos que se detallan a continuación contemplan duraciones de tormentas de 1, 2, 4, 6, 8, 10 y 12 días.


Cálculo de Precipitación Media Anual de la Estación de Referencia (PMA ER)

En los proyectos mencionados, se establecieron curvas IDF adoptando distintos puntos de cierre en las cuencas estudiadas. Por esto, antes de proceder al cálculo de la intensidad de la tormenta, debe seleccionarse qué curva se utilizará.

La elección se realiza en función del área, debe adoptarse la cuenca cuya área es la más cercana, inmediata superior o inferior, al valor de la cuenca que se está analizando y la duración de la tormenta adoptada en minutos.

Se presenta a modo de ejemplo las curvas IDF de la cuenca del Feliciano con cierre en Paso Medina perteneciente al proyecto "Estudio de tormentas de diseño en cuencas extensas de la provincia de Entre Ríos" (López et al, 2019).

$$I_{R=5 \text{ } a\tilde{n}os} = \frac{506.24}{(d+1.56)^{0.643}}$$

A través de las ecuaciones (I_R) se determina la intensidad de la tormenta correspondiente al periodo buscado de retorno en años, aplicando la duración de la tormenta en minutos. Esto dará como resultado la intensidad en unidades de $\left(\frac{mm}{h}\right)$.

Para el cálculo de la PMA (ER), multiplicaremos la intensidad calculada por la duración de la tormenta adoptada:

$$PMA(ER) = I\left[\frac{mm}{h}\right]x d[h]$$

Coeficientes de Abatimiento Areal

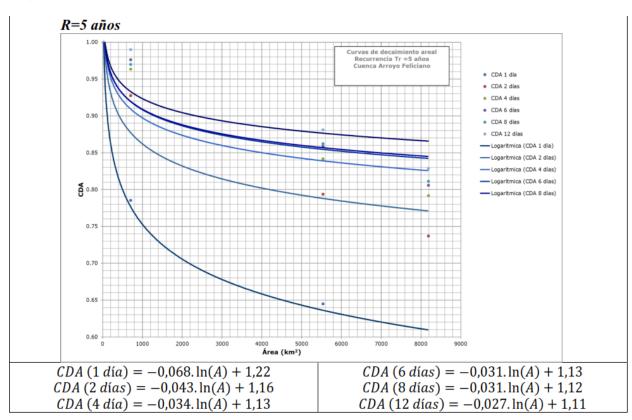
La precipitación media difiere del máximo local, por eso habitualmente en los estudios hidrológicos se estima la precipitación de diseño afectando a la precipitación media por el coeficiente de abatimiento areal.

En los proyectos anteriores, se calcularon ecuaciones a fin de obtener los valores de CAA correspondientes a las características de distintas cuencas, teniendo en cuenta la duración de la tormenta.

- Coeficiente de Abatimiento Estación de Referencia (CAA ER)

Calcularemos el CAA (ER), en función del área de la cuenca de la estación de referencia.

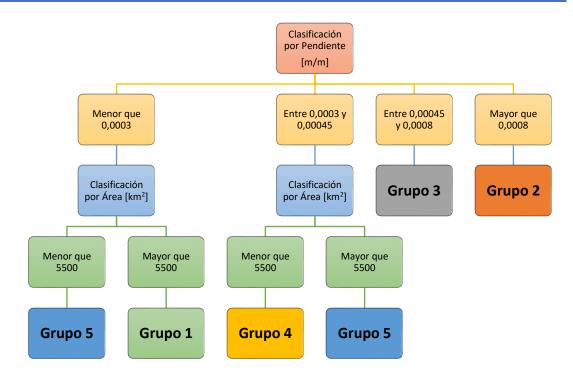
- Coeficiente de Abatimiento Estación de la cuenca estudiada (CAA X)


Calcularemos el CAA (X) con el área que es dato de la cuenca que queremos determinar el caudal.

• Cálculo del PMA de la cuenca estudiada (PMA X)

Cuando se determinaron tanto la intensidad, como ambos coeficientes de abatimiento areal, se calcula la PMA de la cuenca como:

$$PMA(X) = PMA(ER) x \frac{CAA(X)}{CAA(ER)}$$


Se presenta un ejemplo de Curvas de Decaimiento o Abatimiento, perteneciente al proyecto "Estudio de tormentas de diseño en cuencas extensas de la provincia de Entre Ríos" (López et al, 2019).

CÁLCULO DEL CAUDAL MÁXIMO

Una vez obtenidos los parámetros mencionados anteriormente se puede proceder a la estimación del caudal máximo, para ello se deberá respetar el árbol de decisiones que se muestra a continuación.

Ecuaciones de estimación de caudal según Grupo y Recurrencia

Para cada uno de los grupos se presentan las ecuaciones para llevar a cabo la estimación del caudal para las distintas recurrencias (TR) deseadas.

Grupo	TR	Ecuación
1		$LN(Q2a\tilde{n}os) = +67,64 + (1,36) * LN(A) + (-0,90) * LN(i) + (-15,14) * LN(PMA)$
2		$LN(Q2a\tilde{n}os) = +8,10 + (1,31) * LN(A) + (0,37) * LN(i) + (-2,00) * LN(PMA)$
3	2	$LN(Q2a\tilde{n}os) = -8.05 + (0.58)xLN(A) + (1.63)xLN(i) + (4.40)xLN(PMA)$
4		$LN(Q2a\tilde{n}os) = -22,01 + (-0,02)xLN(A) + (-1,23)xLN(i) + (3,59)xLN(PMA)$
5		$LN(Q2a\tilde{n}os) = +0.43 + (0.07) * LN(A) + (0.22) * LN(i) + (1.41) * LN(PMA)$
1		$LN(Q5a\tilde{n}os) = +63,29 + (0,94) * LN(A) + (-1,03) * LN(i) + (-12,99) * LN(PMA)$
2		$LN(Q5a\tilde{n}os) = +7.52 + (1.16) * LN(A) + (0.36) * LN(i) + (-1.45) * LN(PMA)$
3	5	$LN(Q5a\tilde{n}os) = -6.97 + (0.60)xLN(A) + (1.48)xLN(i) + (3.81)xLN(PMA)$
4		$LN(Q5a\tilde{n}os) = 19,51 + (0,09)xLN(A) + (-0,73)xLN(i) + (-3,73)xLN(PMA)$
5		$LN(Q5a\tilde{n}os) = -0.92 + (0.24) * LN(A) + (-0.11) * LN(i) + (0.90) * LN(PMA)$
1		$LN(Q10a\tilde{n}os) = +54,34 + (0,83) * LN(A) + (-0,77) * LN(i) + (-10,52) * LN(PMA)$
2		$LN(Q10a\tilde{n}os) = +8,67 + (1,10) * LN(A) + (0,33) * LN(i) + (-1,55) * LN(PMA)$
3	10	$LN(Q10a\tilde{n}os) = 2,63 + (7,43)xLN(A) + (-7,63)xLN(i) + (5,22)xLN(PMA)$
4		$LN(Q10a\tilde{n}os) = 41,75 + (-0,033)xLN(A) + (0,19)xLN(i) + (-6,18)xLN(PMA)$
5		$LN(Q10a\tilde{n}os) = -0.34 + (0.31) * LN(A) + (-0.65) * LN(i) + (-0.07) * LN(PMA)$

Grupo	TR	Ecuación
1		$LN(Q20a\tilde{n}os) = +49,24 + (0,75) * LN(A) + (-0,49) * LN(i) + (-8,84) * LN(PMA)$
2		$LN(Q20a\tilde{n}os) = +9.76 + (1.09) * LN(A) + (0.22) * LN(i) + (-1.79) * LN(PMA)$
3	20	$LN(Q20a\tilde{n}os) = -3.26 + (0.62)xLN(A) + (0.92)xLN(i) + (2.21)xLN(PMA)$
4		$LN(Q20a\tilde{n}os) = 35,64 + (0,01)xLN(A) + (0,95)xLN(i) + (-3,92)xLN(PMA)$
5		$LN(Q20a\tilde{n}os) = -2.61 + (0.32) * LN(A) + (-1.04) * LN(i) + (-0.22) * LN(PMA)$
1		$LN(Q50a\tilde{n}os) = +38.71 + (0.70) * LN(A) + (-0.18) * LN(i) + (-6.32) * LN(PMA)$
2		$LN(Q50a\tilde{n}os) = +19,50 + (0,93) * LN(A) + (0,65) * LN(i) + (-2,73) * LN(PMA)$
3	50	$LN(Q50a\tilde{n}os) = 9.37 + (0.53)xLN(A) + (0.99)xLN(i) + (0.14)xLN(PMA)$
4		$LN(Q50a\tilde{n}os) = 29,99 + (0,076)xLN(A) + (1,33)xLN(i) + (-2,35)xLN(PMA)$
5		$LN(Q50a\tilde{n}os) = -3.09 + (0.39) * LN(A) + (0.33) * LN(i) + (1.73) * LN(PMA)$
1		$LN(Q100a\tilde{n}os) = +36,82 + (0,63) * LN(A) + (-0,05) * LN(i) + (-5,59) * LN(PMA)$
2		$LN(Q100a\tilde{n}os) = +21,39 + (0,88) * LN(A) + (0,65) * LN(i) + (-2,91) * LN(PMA)$
3	100	$LN(Q100a\tilde{n}os) = -1,018 + (0,66)xLN(A) + (0,94)xLN(i) + (1,76)xLN(PMA)$
4		$LN(Q100a\tilde{n}os) = 40,75 + (-0,137)xLN(A) + (2,33)xLN(i) + (-2,49)xLN(PMA)$
5		$LN(Q100a\tilde{n}os) = -2.25 + (0.15) * LN(A) + (-1.56) * LN(i) + (-0.69) * LN(PMA)$

Ejemplo de aplicación

Se desarrolla un ejemplo aplicando el método descripto para obtener el caudal máximo de una cuenca para una recurrencia de 5 años. En este caso el caudal máximo es conocido para poder verificar los resultados obtenidos.

Cálculo del caudal máximo para la cuenca del río Guayquiraró:

Datos necesarios

- Área (A) = 3.074 km²
- Pendiente media del curso principal (i) = 0,00036 m/m
- Longitud del curso principal (Lc) = 129,54 km
- Cota inferior (Ci) = 37,57 m
- Cota superior (Cs) = 84,71 m
- Diferencia cotas (ΔH) = Cs Ci = 84,71 m 37,57 m = 47,14 m
- Tiempo de concentración (Tc) = $\left(\frac{0.871*Lc^3}{\Delta H}\right)^{0.385} = \left(\frac{0.871*129.54km^3}{47.14 m}\right)^{0.385} = 59,22 \text{ h}$

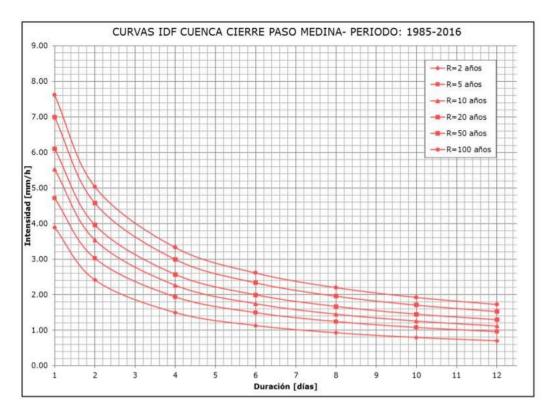
Precipitación Media Areal

Cálculo de duración de la tormenta

Duración de la tormenta d en horas: d = 2.5 * Tc = 2.5 * 59.22 h = 148.05 h

Duración de la tormenta d en días: $d = \frac{148,05 h}{24 h} = 6 días$

• Cálculo de Precipitación Media Anual de la Estación de Referencia (PMA ER)


Elección curva IDF: en este caso no se cuenta con curvas IDF de la cuenca del río Guayquiraró, por lo cual se eligen curvas IDF de una estación de referencia con características similares a la cuenca en estudio.

Se selecciona la cuenca del arroyo Feliciano ya que es la de cercanía y se busca del proyecto correspondiente las curvas IDF que correspondan a un área similar a la de la cuenca en estudio.

Las curvas IDF de la cuenca del arroyo Feliciano con cierre en Paso Medina corresponden a un área de 5.538 [km²] a la cual se adapta mejor la cuenca del río Guayquiraró de 3.074 [km²].

Estas curvas IDF pertenecen al proyecto "Estudio de tormentas de diseño en cuencas extensas de la provincia de Entre Ríos" (López et al, 2019).

La ecuación correspondiente al grupo de curvas IDF seleccionadas para 5 años de recurrencia es la siguiente:

$$I_{R=5 \text{ } a\tilde{n}os} = \frac{506.24}{(d+1.56)^{0.643}}$$

donde:

Duración "d" en minutos

Resultado I_R = mm/hs

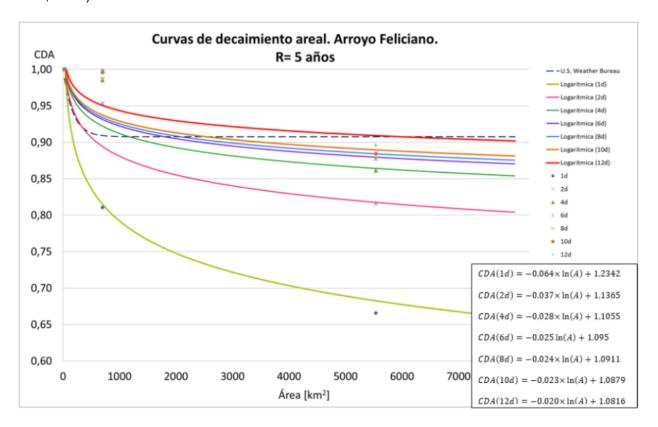
Cálculo de la intensidad de la tormenta (I_R)

$$I_{R_{2a\tilde{n}os}} = \frac{506,24}{(d+1,56)^{0,643}} = \frac{506,24}{(8640\ min+1,56)^{0,643}} = 1,53\frac{mm}{hs}$$

Cálculo de la Precipitación Media Areal de la Estación de Referencia (ER):

$$PMA(ER) = I \frac{mm}{h} x d h = 1,53 \frac{mm}{hs} * 144 hs = 220,44 mm$$

Cálculo de la Precipitación Media Areal de la Estación Estudiada X:


$$PMA(X) = PMA(ER) x \frac{CAA(X)}{CAA(ER)}$$

Cálculo de los Coeficientes de Abatimiento Areal

Coeficiente de Abatimiento areal de la estación de Referencia CAA ER: se busca en el proyecto correspondiente la curva de CAA para la estación de referencia y la recurrencia adoptada.

En este caso para la cuenca del arroyo Feliciano y una recurrencia de 5 años corresponde la siguiente curva perteneciente al proyecto "Estudio de tormentas de diseño en las cuencas del arroyo Feliciano y río Gualeguaychú de la provincia de Entre Ríos" (Bonomi et al, 2017):

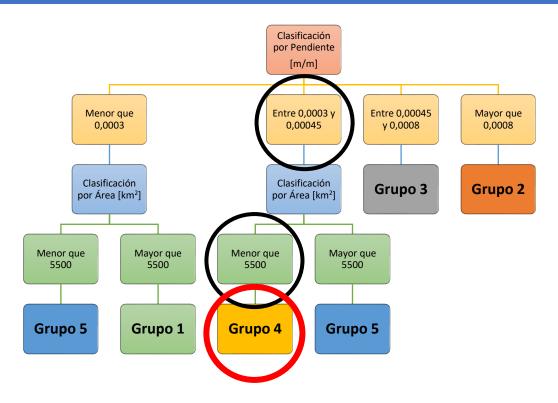
Cálculo del CAA ER:
$$CAA ER = -0.025 * \ln(5.538 \text{ km}^2) + 1.095 = 0.879$$

Coeficiente de Abatimiento areal de la estación estudiada CAA X: se utiliza la misma fórmula con la cual se calculó el CAA de la estación de referencia

Cálculo del CAA X:
$$CAA X = -0.025 * \ln(3.074 \text{ km}^2) + 1.095 = 0.894$$

Finalmente, se calcula la Precipitación Media Areal para la cuenca estudiada

$$PMA(X) = PMA(ER) x \frac{CAA(X)}{CAA(ER)} = 220,44 mm * \frac{0,894}{0,879} = 224,2 mm$$


Cálculo del caudal máximo

Ingresando al árbol de decisiones con la pendiente media del curso principal se selecciona la región correspondiente para llegar a la ecuación de caudal máximo.

Pendiente media del curso principal (i) = 0,00036 [m/m]

Área (A) =
$$3.074 \text{ [km}^2\text{]}$$

Entonces la ecuación para el Grupo 4 con una recurrencia de 5 años es la siguiente:

$$LN(Q5a\tilde{n}os) = 19.51 + (0.09)xLN(A) + (-0.73)xLN(i) + (-3.73)xLN(PMA)$$

Cálculo del caudal máximo para una recurrencia de 5 años

$$LN(Q5a\tilde{n}os) = 19,51 + (0,09)xLN(3074) + (-0,73)xLN(0,00036) + (-3,73)xLN(224,2)$$

 $LN(Q5a\tilde{n}os) = 5,8$

$$Q_{estimado} = 330,3 \frac{m3}{s}$$

Cálculo del error entre Q_{estimado} y Q_{conocido}

Caudal conocido cuenca del río Guayquiraró para 5 años de recurrencia $Q_{conocido} = 319 \frac{m3}{s}$

Error entre
$$Q_{conocido}$$
 y $Q_{estimado} = \frac{Q_{estimado}}{Q_{conocido}} - 1 = \frac{330,3}{319} - 1 = 3,54\% < 20\% \rightarrow VERIFICA$