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Abstract— Nowadays, most Cloud applications are developed 
using Service Oriented Architecture (SOA) or MicroService 
Architecture (MSA). The scalability and performance of them 
is achieved by executing multiple instances of its components in 
different nodes of a virtualization cluster. Initially, they were 
deployed in Virtual Machines (VMs) but, they required enough 
computational, memory, network and storage resources to 
hold an Operating System (OS), a set of utilities, libraries, and 
the application component. By deploying hundreds of these 
application components, the resource requirements increase a 
lot. To minimize them, usually small OSs with small memory 
footprint are used. Another way to reduce the resource 
requirements is integrating the application components in a 
Unikernel. This article proposes a Unikernel called MUK, 
based on a multiserver OS, to be used as a tool to integrate 
Cloud application components. MUK was built to run in user-
space of a Distributed Virtualization System. Both technologies 
facilitate the scattering of application components in a 
virtualization cluster keeping the isolation properties and 
minimal attack surface of a Unikernel. 

Keywords: virtualization, multiserver, middleware 

I.  INTRODUCTION 

Nowadays, there is a need to build and to deploy 
distributed applications to satisfy the performance needs of 
Cloud information systems. They must be able to manipulate 
big data volumes (sounds, videos, photographs, documents, 
etc.) in huge and complex databases. Most of these Cloud 
applications are developed using the SOA [1] or MSA [2] 
methodologies. Both software architectures, consist of 
factoring a monolithic application into multiple components 
that communicate with each other through some standardized 
protocol (such as SOAP [3]), with a weak coupling between 
them. 

The application scalability and performance is achieved 
by deploying multiple instances of its components in 
different nodes of a virtualization cluster (usually called 
"swarms"). Initially, Virtual Machines (VMs) were used, but 
they required enough computational, memory, network and 
storage resources to hold a complete Operating System (OS), 
its utilities, libraries, and the application component. When 
deploying a swarm of VMs, the resource needs increase 
proportionally. To reduce that demand, OSs with small 
memory footprint are often used. 

Later, as management tools such as Docker [4], 
Kubernetes [5], Mesos [6] (among others) were improved, 

application components began to be deployed in Containers. 
Containers (and similar OS abstractions such as Jails [7] and 
Zones [8]) are isolated execution environments or domains 
in user-space to execute groups of processes. Although 
Containers share the same OS, they provide enough security, 
performance and failure isolation. As Containers demand 
fewer resources than VMs [9], they are a good choice to 
deploy swarms. 

Another option to reduce resource requirements is to use 
the application component embedded in a Unikernel [10, 
11]. A Unikernel is defined as “specialized, single-address-
space machine image constructed by using library operating 
system” [12]. A Unikernel is a technology which integrates 
monolithically network, storage, and file systems services 
with the application component resulting in a single 
executable code. This way of building an environment to run 
the application optimizes resource usage because only those 
services that the application requires are integrated. 
Therefore, the size of the resulting executable code, memory 
footprint and the application attack surface are reduced to a 
minimum. Those facts improve application security, and 
make application components easily distributable, replicable 
and deployable. 

It is unlikely that the application component embedded 
into a Unikernel will be completely autonomous. Probably, it 
needs to communicate with other components running within 
other Unikernels, and with external servers such as storage 
servers, file servers, logging-servers, database servers, key-
value servers, etc. A provider-class Cloud application must 
coordinate the actions among its components and with the 
external servers to provide fault tolerance and replicated 
services. Peer to peer and group communications, leader 
election mechanisms, fault detection, distributed locking, 
etc., are requirements to coordinate actions among 
distributed components.  All of these are complex services 
which must be considered in the application design and 
development stages and in the application-Unikernel build. 

This article presents a Unikernel called MUK, based on a 
multi-server user-space OS instead of a Library OS. As its 
components (servers) are autonomous by definition, the 
integration with the application is facilitated. The chosen OS 
used as a base to build MUK was Minix Over Linux (MoL) 
[13], a user-space Minix branch which run as a set of Linux 
processes. Minix is a POSIX-compliant OS, and because 
MoL is a port of it to user-space, it is compliant too. As 
MUK is the Unikernel version of MoL, it keeps the POSIX-



compliance which allows it to execute legacy applications 
under its environment. This feature represents an important 
advantage over some other Unikernels which provide their 
own non-compliance APIs forcing developers to port their 
legacy applications.  

MUK runs inside a Distributed Container of a Distributed 
Virtualization System (DVS) [14]. A Distributed Container 
covers several related Linux Containers scattered on nodes of 
a virtualization cluster. The Unikernel and DVS technologies 
facilitate the distribution of application components as 
swarms across the nodes of a DVS cluster. A DVS provides 
MUK and its integrated application components, several 
services required by distributed applications such as 
location-transparent IPC, a Group Communication System 
(GCS), fault detection, replication, leader election 
mechanisms, easy deployment and management, etc. All 
these features are the platform requirements to develop and 
to deploy elastic, high availability, high performance, 
distributed Cloud application. 

The rest of this article is organized as follows. Section II 
refers to related works and background technologies. Section 
III describes the architecture of MoL as a Unikernel (MUK) 
and the design and implementation of its prototype. Partial 
performance evaluation results of the prototype are reported 
in section IV and finally, Section V presents conclusions, in-
progress works, and future research projects. 

II. RELATED WORKS AND BACKGROUND TECHNOLOGIES 

The most commonly adopted virtualization technologies 
are VMs and Containers as isolated execution environments. 
Both are partitions of a physical computer, so that their 
computing resources are limited by the latter. 

The architecture model of a DVS [14] is based on several 
Virtualization and DOS [15, 16] technologies getting the 
benefits of both worlds. Due to its features, it is a good 
choice to offer high performance provider-class Cloud 
services. In this sense, it presents attractive features for 
Cloud service providers such as high availability, replication, 
elasticity, load balancing and process migration. In a DVS, 
the administrator can build execution domains, called 
Distributed Containers (DC), which can be extended beyond 
the limits of a physical machine or cluster node (Fig. 1).  

 
Figure 1.  Distributed Virtualization System Topology. 

Instead of running the application on the hosts-OS, a 
VOS (Virtual Operating Systems) [15] is needed to improve 
security and fault isolation and provide a greater variety of 
options for applications. The DVS enables the execution of 
multiple instances of different VOS each one executing in its 
own DC. A subset of nodes is allocated for each DC, but 
they can share the nodes between several DCs (Fig. 1). This 
higher degree of granularity of resource allocation allows a 
better use of the infrastructure and provides greater elasticity 
and efficiency. 

A. DVS Architecture 

The main components of the DVS architecture model are 
(Fig. 2): 
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Figure 2.  Distributed Virtualization System architecture model. 

1) Distributed Virtualization Kernel (DVK): It is the 
core software layer that integrates the resources of the 
cluster, manages and limits the resources assigned to each 
DC. It provides interfaces for low-level protocols and 
services, which can be used to build a VOS, such as IPC, 
GCS, synchronization, replication, locking, leader election, 
fault detection, mutual exclusion, performance parameter 
sensing, processes migration mechanism, etc.  
2) Distributed Virtualization Management System (DVMS): 
It is the software layer that allows the DVS administrator to 
both manage and monitor the resources of the cluster.  
3) Container: It is a host-OS abstraction which provides an 
isolated environment to run the components of a VOS. A set 
of related Containers makes up a DC. 
4) Distributed Container (DC): It is a set of single 
Containers, each one being set up by the DVMS in the host-
OS of each node. There is one DC per VOS, and a DC can 
span from one to all nodes. Only processes belonging to the 
same DC can communicate transparently between them 
using DVK provided mechanisms. 
5) Virtual Operating System (VOS): Any kind of VOS can 
be developed or ported to meet DVS architecture 
requirements. The task of modifying an existing OS to turn 
it into a VOS is simplified because it does not need to deal 
with real hardware resources but with virtual ones. MUK is 
a proof of this assertion.  
6) VOS applications: They are applications (centralized or 
distributed) running within the same DC, using VOS-
provided services. 



The DVS architecture opens several issues related to 
itself and to its components, such as the VOSs. This article 
presents the research and development works of a Unikernel 
VOS based on a multi-server OS. 

B. Minix over Linux (MoL) 

MoL [13] is a VOS formed by a set of Linux processes 
which exchange messages through the IPC mechanisms 
provided by a pseudo-kernel (molkernel). The Process 
Manager (PM) is emulated by a daemon named molpm, the 
Filesystem Server (FS) is emulated by another daemon 
named molfs, and some Minix tasks have their MoL 
counterpart daemons. 

Several instances of MoL (different instances of 
molkernel, molfs, molpm, and MoL tasks) could be running 
on the same Linux host, each of them as a VOS in user-
space. On the other hand, it must be clear that MoL 
processes do not need to run in the same Linux Host, they 
could be scattered among different servers, acting as a 
primitive SSI-DOS. 

MoL maps each Minix-emulated process to a Linux 
process covered with an isolation shield around it. The shield 
handles System Calls and traps Linux signals. When the 
Minix-emulated process invokes a System Call, the shield 
intercepts and converts it into a custom RPC using the 
format of Minix messages. The shield also traps Linux 
signals addressed to the Minix-emulated process and, 
depending on the kind of signal and the mask that the 
process has set, it calls the process handler, ignores it, or 
notifies the pseudo-kernel about the received signal. 

Process scheduling, memory management, exception 
handling, timer and interrupt management and alarm 
signaling are handled transparently by the Linux-Host 
through the process shield. 

C. Interprocess Communications (M3-IPC) 

A critical component of every distributed system is the 
software communication infrastructure. To simplify the 
development of a VOS, the M3-IPC [17] infrastructure was 
developed. It allows building VOS components, such as 
clients, servers and tasks with a uniform semantics without 
considering process location. Provider-class requirements 
were considered in the design stage, such as process 
replication, process migration, communications confinement, 
and high performance for both intra-node and inter-node 
communications. M3-IPC is a pluggable module embedded 
in the Linux kernel, supplying the IPC primitives of a 
microkernel OS. It can be used as a component of the DVS 
or alone as a high performance IPC mechanism for generic 
(centralized or distributed) applications. 

D. Exokernels and Unikernels 

Generally, in classical virtualization, a Guest-OS is 
associated with each VM, who offers file, IPC and network 
services for applications. Several years ago, another form of 
application processing was proposed using an exokernel 
[18]. On an exokernel, the applications, the services of a 
Library OS and device drivers are compiled into a single 
binary program that is executed using exokernel services. 

One of the biggest drawbacks of this technology is the 
incompatibilities of the Library-OS with the diversity of 
hardware devices. Anyway, this aspect was partially solved 
because a large part of the libraries used to build the 
exokernel are the same as to build an ordinary OS or its 
applications. 

A Unikernel [10] is like an Exokernel, but it does not run 
directly on the hardware, it uses the services provided by a 
hypervisor (in paravirtualized mode) thus achieving greater 
portability. This mode of running applications within a VM 
is very efficient in terms of resource utilization, security and 
scalability. Usually, a Unikernel does not provide System 
Calls, it does not differentiate between user-mode and 
kernel-mode, and it runs all its components with the same 
CPU privileges.  

As it was shown, a Unikernel is a minimalist monolithic 
kernel, which is custom built for the application that will use 
it. The application is integrated into the Unikernel itself 
along with the rest of its required components. It is said to be 
minimalist because only the components required to execute 
both the service components (device drivers, filesystems, 
network protocol stacks, etc.) and the embedded application 
are included in its code. While this strategy reduces the 
attack surface against security threats, it should also be 
considered that the Unikernels often run with kernel 
privileges (which include the application) so, an error or 
vulnerability in an application can affect the Unikernel 
completely. Even worse, if Unikernels communicate among 
them (a common pattern in Cloud applications) a faulty one 
can induce errors, defects and inconsistencies in the other 
members (contamination). 

In recent years, possibly due to the resource consumption 
of VMs, several Unikernel projects emerged. 

The Rumpkernel [19] enables developers to build their 
application components around a software stack. A 
Rumpkernel could run on several platforms such as 
userspace POSIX, bare metal, Xen DomU and Genode. 

IncludeOS [20] is a library OS that allows building a 
single task Unikernel. As it is not fully-compatible with 
Linux some application could need to be modified. 

MirageOS [21] is another library OS tool to build 
Unikernels on platforms such as Xen or KVM hypervisors. It 
is fully event-driven, but it does not support for preemptive 
threading. 

There exists more Unikernels which can run on a variety 
of platforms, providing POSIX-compatible APIs or its own 
APIs, written in different languages such as C, C++, GO, 
python, Clang, etc.  

III. MOL AS A UNIKERNEL (MUK) 

Generally, a Unikernel is a monolithic piece of software 
often based on the source code of a monolithic OS. In this 
way, the application instead of using System Calls to request 
services, directly calls kernel functions that, in their OS 
version, implement the System Calls. 

On the other hand, a microkernel OS, is formed by a set 
of autonomous modules with established liabilities and 
scope. This property allows building more modular 
Unikernels, using IPC mechanisms as the interface between 



its components. Furthermore, it enables the communication 
of Unikernel internal modules, with other components or 
applications outside the Unikernel. If the Unikernel runs in a 
DVS, its components can communicate transparently using 
IPC with other internal modules or with other Unikernels 
components of the swarm located in other nodes of a 
virtualization cluster. If the set of Unikernels and external 
modules are executed within the context of a DC, they can 
be executed on any node of the cluster that is covered by the 
DC. This feature provides simplicity, flexibility and 
elasticity for the deployment and management of application 
swarms.  

If all the application components are executed within the 
context of a DC, the deployment, operation and maintenance 
of the full application are facilitated. There is no need to 
configure IP addresses and ports to be used in 
communications between Unikernels and DB servers, nor to 
configure firewall rules to protect the traffic between them. It 
is only necessary to configure the IP addresses of the virtual 
interfaces of the Unikernels to publish web services. With 
the help of the DVS features, programmers can focus on 
writing application code instead of managing networks, 
protocols, containers, storage, VMs and hosts resources.  

MUK differs from other Unikernels because it must run 
in a DVS cluster, which provides it of essential services to 
simplify the programming of distributed and fault-tolerant 
Cloud applications. 

A. MUK  Prototype Design 

MUK prototype is made up by a single Linux process 
with multiple threads. The use of at least one thread for the 
execution of each server or task was established as a design 
principle.  

A well-known property of threads belonging to the same 
process is that they share global variables, functions and all 
host-OS allocated resources (such as file descriptors). 
Having considered this property at the design stage, the 
possibility of building an internal IPC mechanism among 
MUK threads was evaluated. Threads have the advantage of 
sharing memory, so those IPC copy operations would be 
avoided. But, as a counterpart, mutual exclusion and 
synchronization mechanisms will be required to build the 
internal IPC, which meant transferring the control to the 
host-OS kernel. Therefore, this approach was discarded. It 
was established that the IPC mechanism to be used in MUK 
would be M3-IPC with some copy operations as exceptions 
to this rule.  

The following are the components of the MUK 
prototype: 
- System task (SYSTASK): It manages process descriptors 

and their endpoints. It also allows the copy of data 
blocks between different processes by controlling the 
privileges established for the requester process. 

- Clock Task (CLOCK): It provides SYSTASK with timer 
functions and other time related services.   

- Process Manager (PM): It allocates PIDs to each 
process in MUK namespace. It also notifies events 
through signals to the destination processes. 

- File System Server (FS): It manages directories and files 
stored in block devices [22]. 

- Disk Task (RDISK): It manages a virtual disk mapped on 
an OS-host regular file. RDISK can run replicated on 
several nodes, but this option was disabled [23]. 

- Information Server (IS) and Web Information Server 
(WIS): It allows to get configuration, status and 
statistical information of each MUK server or task. It 
can be visualized in plain text mode (IS) or in HTML 
(WIS) format through a web browser. 

- Web Server (NWEB): It is a web server of static web 
pages stored by the FS. In the current version, NWEB 
network access is made using the host-OS TCP/IP 
protocol stack. 

- File transfer server M3-IPC (M3FTP): It allows file 
transfers to/from an external process belonging to the 
same DC from/to a file stored in MUK filesystem. The 
communication protocol used for the transfers is M3-
IPC (not TCP/IP). 

The main MUK process with all of its threads, are 
executed inside a Container of the OS-host which is a 
member of a DC. In this way this property enables that any 
MUK thread can communicate with other external processes 
(local or remote) of the same DC. 

 
Figure 3.  MUK Prototype Architecture. 

B. MUK  Prototype Implementation 

One benefit of any system made up by a set of 
autonomous modules is that they can communicate through 
well-established interfaces. This positive feature presents as 
a negative one when trying to merge all of these modules 
into a single one, breaking the isolation between them. One 
of these issues refers to the names of global variables 
because they are shared among the threads of the same 
process. For example: The RDISK driver uses a global 
variable called buffer, but as the FS server also uses its own 
global variable called buffer a name collision happens. 
Therefore, the global variables with the scope of a thread had 
been renamed to avoid name collision with other. In this 



way, the buffer variable of RDISK was renamed rd_buffer 
and that of FS is now fs_buffer. 

 A similar situation happens with the name of some 
functions. For example, the function that handles the fork() 
system call in PM is called do_fork(), same as in FS. These 
functions were renamed as pm_do_fork() and fs_do_fork() 
respectively. 

 The SYSTASK has a shared memory area with the DVK 
through the /sys/kernel/debug virtual filesystem. In this 
memory area, the DVK stores the process descriptors of each 
DC. Due to MUK tasks and servers are implemented using 
threads, they share a memory space among them. Therefore, 
process descriptors can be directly accessed from any other 
MUK thread, or they can use memcpy() to get a copy of 
them.  

When MUK starts, its main thread starts the set of 
component threads (tasks or servers) sequentially. Each 
thread initializes its state, and registers itself with an 
endpoint to the DVK (dvk_bind()) in order to use M3-IPC. 
Once it is ready to serve its clients, it notifies the main thread 
using Linux provided condition variables and mutexes. 

MUK can be build integrating several tasks and servers, 
but a configuration file is used to specify which threads will 
be started and registered to the DVK. Each MUK instance, 
must belong to a DC (dcid entry), and each of its threads 
must have its own endpoint number (xxx_ep entries) (Fig. 4). 
As each server needs other configuration parameters, they 
can be configured using their own configuration files.  

muk SERVER1 { 
 dcid  0; 
 pm_ep  0; 
 fs_ep  1; 
 is_ep  8; 
 rd_ep  3; 
 web_ep  22; 
 ftp_ep  14; 
 fs_cfg  "molfs.cfg"; 
 rd_cfg  "rdisk.cfg"; 
 web_cfg  "m3nweb.cfg"; 
 ftp_cfg           "m3ftp.cfg"; 
}; 

Figure 4.  Example of MUK configuration file. 

MUK also have its own tools to get thread information. 
Sending a SIGUSR1 signal to the IS thread, it prints to an 
output file the information of DC configuration parameters, 
SYSTASK’s process descriptors, PM’s process descriptors, 
FS’s process descriptors, FS’s superblocks of mounted 
devices, etc.   

The IS thread starts another thread for the WIS server. It 
enables getting MUK information in HTML mode from a 
Web Browser. Using the same approach of the provided 
servers, any application included into the MUK code could 
be monitored using the text mode o html mode interfaces. 

Two main server applications were included into the 
MUK prototype: a web server and a M3FTP server. The web 
server only uses static web pages stored in files into the FS.  

The current version of MUK prototype was implemented 
on Debian 9.4 (called “stretch”) with a Linux kernel version 
4.9.88. When MUK is running, its (virtual) memory usage is 
about 89 Mbytes, with all the servers and task presented in 

this paper as its components. The size of the MUK 
executable file is only 852 Kbytes.   

IV. PROTOTYPE EVALUATION 

To evaluate the performance and the operation of the 
prototype, two DVS nodes were used with the following 
characteristics:  

- NODE0: AMD A6-3670, 2.7 GHz, 8GB RAM. 
- NODE1: Intel(R) Celeron(R) CPU G1820, 2.7 GHz, 

4 GB RAM. 
The nodes of the DVS cluster were connected through a 

dedicated 1 Gbps LAN Switch. A notebook (Intel Core I5-
7200U CPU 2.71 GHz, 4 GB RAM) with Windows 10 was 
used as the client for HTTP file transfers also connected to 
the same LAN switch. 

The data and message transfers between NODE0 and 
NODE1 were performed using TIPC-based [24] 
communication proxies. Although TCP or UDP proxies 
could be used, the TIPC proxies showed superior 
performance in previous evaluations [17].  The current TIPC 
proxies have the following additional features such as 
message batching and data compression. 

To verify the versatility of MUK, it was tested in three 
scenarios with different configurations: 

 Config-A: All components are integrated on MUK, 
including the RDISK task. 

 Config-B: All components with the exception of 
RDISK are integrated on MUK. RDISK runs as an 
external local storage server. 

 Config-C: All components with the exception of 
RDISK are integrated on MUK. RDISK runs as a 
remote storage server. 

Several types of benchmarks were performed for each 
configuration but, by space limitations, the following is 
reported here: HTTP file transfer from a remote web Client 
(wget), where remote means “on another computer” in the 
same network (LAN). The same benchmarks were done on 
an Apache web server as a reference for performance 
comparison. 

The file transfer benchmarks were done several times 
with files sizes of 10 Mbytes and 50 Mbytes. The displayed 
values are averages of the measurements. As all benchmarks 
were done with dedicated computers and LAN switch, the 
standard deviation of the results was negligible and 
therefore, it is omitted here. The RDISK task was configured 
to use an “in memory” disk image file and the Apache web 
server used a document directory in a RAM filesystem to 
eliminate the stochastic values of hard disk latencies.  

The throughput of a remote Client file download is 
presented in Fig. 5. In this case, the gaps between of Config-
A, Config-B vs. Apache are less noticeable because in all 
cases the HTTP communications over the network between 
the remote Client and the web Server has greater impact. 
Config-C is doubly affected by data transfers over the 
network with RDISK running on other node. 

Another important metric for Unikernels is the boot time: 
MUK process, with all of its threads, is started inside a DC 
(which includes creating a Linux Container) in 22 [ms]. 



V. CONCLUSIONS AND FUTURE WORKS 

Minix’s architecture based on a microkernel and device 
drivers in user-mode has influenced in such a way that 
INTEL has integrated it as part of several of its CPU chips 
[25]. It uses message transfers to communicate processes, 
servers and tasks. Those features facilitated its port to user- 
space such as MoL. On the other hand, a DVS allows the 
configuration of isolated execution environments (DCs) 
(which can cover several related Linux Containers each), 
scattered on nodes of a virtualization cluster.  

The primary contribution of this work is to present MUK, 
a Unikernel based on user-space multi-server VOS (MoL) 
built to run on a DVS. MUK improves its security features 
running within a DC which can cover one or more Linux 
Containers. MUK components run integrated in one process, 
but can use external services running on the same host or 
distributed in several nodes of the DVS cluster without 
changing the applications. The communication of MUK 
components with other external (local or remote) servers is 
transparent about server locations. From the operational 
viewpoint, the MUK prototype works according to its design 
specifications: simple, elastic, easy to deploy and manage.  
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Figure 5.  Client wget Throughput. 

As MUK is POSIX-compatible it allows fast application 
port and, because it is multi-server, more than one 
component could run within the same Unikernel. As running 
MUK on a DVS facilitates the deployment of Cloud 
applications, programmers can focus on writing application 
code instead of managing networks, protocols and hosts.  

To fully test DVS features in several scenarios, other 
VOS projects were started and remain in progress. The MUK 
version presented in this article runs its servers as threads, 
but at the time of this writing they can run as co-routines 
[26]. A project just finished allows running UML [27] on the 
DVS and an ongoing project is about running a rumpkernel 
[19]. Running UML instances and rumpkernels concurrently 
on a DVS will allow executing a wide range of existing 
applications and it will definitely convince the community 
about the advantages of using a DVS to deploy applications.  
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