
A Multiserver User-space Unikernel for a Distributed Virtualization System

Pablo Pessolani
Departamento de Ingeniería en Sistemas de Información

Facultad Regional Santa Fe, UTN
Santa Fe, Argentina

ppessolani@frsf.utn.edu.ar

Abstract— Nowadays, most Cloud applications are developed
using Service Oriented Architecture (SOA) or MicroService
Architecture (MSA). The scalability and performance of them
is achieved by executing multiple instances of its components in
different nodes of a virtualization cluster. Initially, they were
deployed in Virtual Machines (VMs) but, they required enough
computational, memory, network and storage resources to
hold an Operating System (OS), a set of utilities, libraries, and
the application component. By deploying hundreds of these
application components, the resource requirements increase a
lot. To minimize them, usually small OSs with small memory
footprint are used. Another way to reduce the resource
requirements is integrating the application components in a
Unikernel. This article proposes a Unikernel called MUK,
based on a multiserver OS, to be used as a tool to integrate
Cloud application components. MUK was built to run in user-
space of a Distributed Virtualization System. Both technologies
facilitate the scattering of application components in a
virtualization cluster keeping the isolation properties and
minimal attack surface of a Unikernel.

Keywords: virtualization, multiserver, middleware

I. INTRODUCTION

Nowadays, there is a need to build and to deploy
distributed applications to satisfy the performance needs of
Cloud information systems. They must be able to manipulate
big data volumes (sounds, videos, photographs, documents,
etc.) in huge and complex databases. Most of these Cloud
applications are developed using the SOA [1] or MSA [2]
methodologies. Both software architectures, consist of
factoring a monolithic application into multiple components
that communicate with each other through some standardized
protocol (such as SOAP [3]), with a weak coupling between
them.

The application scalability and performance is achieved
by deploying multiple instances of its components in
different nodes of a virtualization cluster (usually called
"swarms"). Initially, Virtual Machines (VMs) were used, but
they required enough computational, memory, network and
storage resources to hold a complete Operating System (OS),
its utilities, libraries, and the application component. When
deploying a swarm of VMs, the resource needs increase
proportionally. To reduce that demand, OSs with small
memory footprint are often used.

Later, as management tools such as Docker [4],
Kubernetes [5], Mesos [6] (among others) were improved,

application components began to be deployed in Containers.
Containers (and similar OS abstractions such as Jails [7] and
Zones [8]) are isolated execution environments or domains
in user-space to execute groups of processes. Although
Containers share the same OS, they provide enough security,
performance and failure isolation. As Containers demand
fewer resources than VMs [9], they are a good choice to
deploy swarms.

Another option to reduce resource requirements is to use
the application component embedded in a Unikernel [10,
11]. A Unikernel is defined as “specialized, single-address-
space machine image constructed by using library operating
system” [12]. A Unikernel is a technology which integrates
monolithically network, storage, and file systems services
with the application component resulting in a single
executable code. This way of building an environment to run
the application optimizes resource usage because only those
services that the application requires are integrated.
Therefore, the size of the resulting executable code, memory
footprint and the application attack surface are reduced to a
minimum. Those facts improve application security, and
make application components easily distributable, replicable
and deployable.

It is unlikely that the application component embedded
into a Unikernel will be completely autonomous. Probably, it
needs to communicate with other components running within
other Unikernels, and with external servers such as storage
servers, file servers, logging-servers, database servers, key-
value servers, etc. A provider-class Cloud application must
coordinate the actions among its components and with the
external servers to provide fault tolerance and replicated
services. Peer to peer and group communications, leader
election mechanisms, fault detection, distributed locking,
etc., are requirements to coordinate actions among
distributed components. All of these are complex services
which must be considered in the application design and
development stages and in the application-Unikernel build.

This article presents a Unikernel called MUK, based on a
multi-server user-space OS instead of a Library OS. As its
components (servers) are autonomous by definition, the
integration with the application is facilitated. The chosen OS
used as a base to build MUK was Minix Over Linux (MoL)
[13], a user-space Minix branch which run as a set of Linux
processes. Minix is a POSIX-compliant OS, and because
MoL is a port of it to user-space, it is compliant too. As
MUK is the Unikernel version of MoL, it keeps the POSIX-

compliance which allows it to execute legacy applications
under its environment. This feature represents an important
advantage over some other Unikernels which provide their
own non-compliance APIs forcing developers to port their
legacy applications.

MUK runs inside a Distributed Container of a Distributed
Virtualization System (DVS) [14]. A Distributed Container
covers several related Linux Containers scattered on nodes of
a virtualization cluster. The Unikernel and DVS technologies
facilitate the distribution of application components as
swarms across the nodes of a DVS cluster. A DVS provides
MUK and its integrated application components, several
services required by distributed applications such as
location-transparent IPC, a Group Communication System
(GCS), fault detection, replication, leader election
mechanisms, easy deployment and management, etc. All
these features are the platform requirements to develop and
to deploy elastic, high availability, high performance,
distributed Cloud application.

The rest of this article is organized as follows. Section II
refers to related works and background technologies. Section
III describes the architecture of MoL as a Unikernel (MUK)
and the design and implementation of its prototype. Partial
performance evaluation results of the prototype are reported
in section IV and finally, Section V presents conclusions, in-
progress works, and future research projects.

II. RELATED WORKS AND BACKGROUND TECHNOLOGIES

The most commonly adopted virtualization technologies
are VMs and Containers as isolated execution environments.
Both are partitions of a physical computer, so that their
computing resources are limited by the latter.

The architecture model of a DVS [14] is based on several
Virtualization and DOS [15, 16] technologies getting the
benefits of both worlds. Due to its features, it is a good
choice to offer high performance provider-class Cloud
services. In this sense, it presents attractive features for
Cloud service providers such as high availability, replication,
elasticity, load balancing and process migration. In a DVS,
the administrator can build execution domains, called
Distributed Containers (DC), which can be extended beyond
the limits of a physical machine or cluster node (Fig. 1).

Figure 1. Distributed Virtualization System Topology.

Instead of running the application on the hosts-OS, a
VOS (Virtual Operating Systems) [15] is needed to improve
security and fault isolation and provide a greater variety of
options for applications. The DVS enables the execution of
multiple instances of different VOS each one executing in its
own DC. A subset of nodes is allocated for each DC, but
they can share the nodes between several DCs (Fig. 1). This
higher degree of granularity of resource allocation allows a
better use of the infrastructure and provides greater elasticity
and efficiency.

A. DVS Architecture

The main components of the DVS architecture model are
(Fig. 2):

Distributed Virtualization Kernel (DVK)

Host OS - 1 Host OS - 2 Host OS - 3

Generic Applications - BGeneric Applications - A

Guest DVOS - A Guest DVOS - B

Container-1 Container-2 Container-4Container-3

DC BDC A

Node 3Node 2Node 1

Distributed Virtualization
Management System (DVMS)

Figure 2. Distributed Virtualization System architecture model.

1) Distributed Virtualization Kernel (DVK): It is the
core software layer that integrates the resources of the
cluster, manages and limits the resources assigned to each
DC. It provides interfaces for low-level protocols and
services, which can be used to build a VOS, such as IPC,
GCS, synchronization, replication, locking, leader election,
fault detection, mutual exclusion, performance parameter
sensing, processes migration mechanism, etc.
2) Distributed Virtualization Management System (DVMS):
It is the software layer that allows the DVS administrator to
both manage and monitor the resources of the cluster.
3) Container: It is a host-OS abstraction which provides an
isolated environment to run the components of a VOS. A set
of related Containers makes up a DC.
4) Distributed Container (DC): It is a set of single
Containers, each one being set up by the DVMS in the host-
OS of each node. There is one DC per VOS, and a DC can
span from one to all nodes. Only processes belonging to the
same DC can communicate transparently between them
using DVK provided mechanisms.
5) Virtual Operating System (VOS): Any kind of VOS can
be developed or ported to meet DVS architecture
requirements. The task of modifying an existing OS to turn
it into a VOS is simplified because it does not need to deal
with real hardware resources but with virtual ones. MUK is
a proof of this assertion.
6) VOS applications: They are applications (centralized or
distributed) running within the same DC, using VOS-
provided services.

The DVS architecture opens several issues related to
itself and to its components, such as the VOSs. This article
presents the research and development works of a Unikernel
VOS based on a multi-server OS.

B. Minix over Linux (MoL)

MoL [13] is a VOS formed by a set of Linux processes
which exchange messages through the IPC mechanisms
provided by a pseudo-kernel (molkernel). The Process
Manager (PM) is emulated by a daemon named molpm, the
Filesystem Server (FS) is emulated by another daemon
named molfs, and some Minix tasks have their MoL
counterpart daemons.

Several instances of MoL (different instances of
molkernel, molfs, molpm, and MoL tasks) could be running
on the same Linux host, each of them as a VOS in user-
space. On the other hand, it must be clear that MoL
processes do not need to run in the same Linux Host, they
could be scattered among different servers, acting as a
primitive SSI-DOS.

MoL maps each Minix-emulated process to a Linux
process covered with an isolation shield around it. The shield
handles System Calls and traps Linux signals. When the
Minix-emulated process invokes a System Call, the shield
intercepts and converts it into a custom RPC using the
format of Minix messages. The shield also traps Linux
signals addressed to the Minix-emulated process and,
depending on the kind of signal and the mask that the
process has set, it calls the process handler, ignores it, or
notifies the pseudo-kernel about the received signal.

Process scheduling, memory management, exception
handling, timer and interrupt management and alarm
signaling are handled transparently by the Linux-Host
through the process shield.

C. Interprocess Communications (M3-IPC)

A critical component of every distributed system is the
software communication infrastructure. To simplify the
development of a VOS, the M3-IPC [17] infrastructure was
developed. It allows building VOS components, such as
clients, servers and tasks with a uniform semantics without
considering process location. Provider-class requirements
were considered in the design stage, such as process
replication, process migration, communications confinement,
and high performance for both intra-node and inter-node
communications. M3-IPC is a pluggable module embedded
in the Linux kernel, supplying the IPC primitives of a
microkernel OS. It can be used as a component of the DVS
or alone as a high performance IPC mechanism for generic
(centralized or distributed) applications.

D. Exokernels and Unikernels

Generally, in classical virtualization, a Guest-OS is
associated with each VM, who offers file, IPC and network
services for applications. Several years ago, another form of
application processing was proposed using an exokernel
[18]. On an exokernel, the applications, the services of a
Library OS and device drivers are compiled into a single
binary program that is executed using exokernel services.

One of the biggest drawbacks of this technology is the
incompatibilities of the Library-OS with the diversity of
hardware devices. Anyway, this aspect was partially solved
because a large part of the libraries used to build the
exokernel are the same as to build an ordinary OS or its
applications.

A Unikernel [10] is like an Exokernel, but it does not run
directly on the hardware, it uses the services provided by a
hypervisor (in paravirtualized mode) thus achieving greater
portability. This mode of running applications within a VM
is very efficient in terms of resource utilization, security and
scalability. Usually, a Unikernel does not provide System
Calls, it does not differentiate between user-mode and
kernel-mode, and it runs all its components with the same
CPU privileges.

As it was shown, a Unikernel is a minimalist monolithic
kernel, which is custom built for the application that will use
it. The application is integrated into the Unikernel itself
along with the rest of its required components. It is said to be
minimalist because only the components required to execute
both the service components (device drivers, filesystems,
network protocol stacks, etc.) and the embedded application
are included in its code. While this strategy reduces the
attack surface against security threats, it should also be
considered that the Unikernels often run with kernel
privileges (which include the application) so, an error or
vulnerability in an application can affect the Unikernel
completely. Even worse, if Unikernels communicate among
them (a common pattern in Cloud applications) a faulty one
can induce errors, defects and inconsistencies in the other
members (contamination).

In recent years, possibly due to the resource consumption
of VMs, several Unikernel projects emerged.

The Rumpkernel [19] enables developers to build their
application components around a software stack. A
Rumpkernel could run on several platforms such as
userspace POSIX, bare metal, Xen DomU and Genode.

IncludeOS [20] is a library OS that allows building a
single task Unikernel. As it is not fully-compatible with
Linux some application could need to be modified.

MirageOS [21] is another library OS tool to build
Unikernels on platforms such as Xen or KVM hypervisors. It
is fully event-driven, but it does not support for preemptive
threading.

There exists more Unikernels which can run on a variety
of platforms, providing POSIX-compatible APIs or its own
APIs, written in different languages such as C, C++, GO,
python, Clang, etc.

III. MOL AS A UNIKERNEL (MUK)

Generally, a Unikernel is a monolithic piece of software
often based on the source code of a monolithic OS. In this
way, the application instead of using System Calls to request
services, directly calls kernel functions that, in their OS
version, implement the System Calls.

On the other hand, a microkernel OS, is formed by a set
of autonomous modules with established liabilities and
scope. This property allows building more modular
Unikernels, using IPC mechanisms as the interface between

its components. Furthermore, it enables the communication
of Unikernel internal modules, with other components or
applications outside the Unikernel. If the Unikernel runs in a
DVS, its components can communicate transparently using
IPC with other internal modules or with other Unikernels
components of the swarm located in other nodes of a
virtualization cluster. If the set of Unikernels and external
modules are executed within the context of a DC, they can
be executed on any node of the cluster that is covered by the
DC. This feature provides simplicity, flexibility and
elasticity for the deployment and management of application
swarms.

If all the application components are executed within the
context of a DC, the deployment, operation and maintenance
of the full application are facilitated. There is no need to
configure IP addresses and ports to be used in
communications between Unikernels and DB servers, nor to
configure firewall rules to protect the traffic between them. It
is only necessary to configure the IP addresses of the virtual
interfaces of the Unikernels to publish web services. With
the help of the DVS features, programmers can focus on
writing application code instead of managing networks,
protocols, containers, storage, VMs and hosts resources.

MUK differs from other Unikernels because it must run
in a DVS cluster, which provides it of essential services to
simplify the programming of distributed and fault-tolerant
Cloud applications.

A. MUK Prototype Design

MUK prototype is made up by a single Linux process
with multiple threads. The use of at least one thread for the
execution of each server or task was established as a design
principle.

A well-known property of threads belonging to the same
process is that they share global variables, functions and all
host-OS allocated resources (such as file descriptors).
Having considered this property at the design stage, the
possibility of building an internal IPC mechanism among
MUK threads was evaluated. Threads have the advantage of
sharing memory, so those IPC copy operations would be
avoided. But, as a counterpart, mutual exclusion and
synchronization mechanisms will be required to build the
internal IPC, which meant transferring the control to the
host-OS kernel. Therefore, this approach was discarded. It
was established that the IPC mechanism to be used in MUK
would be M3-IPC with some copy operations as exceptions
to this rule.

The following are the components of the MUK
prototype:
- System task (SYSTASK): It manages process descriptors

and their endpoints. It also allows the copy of data
blocks between different processes by controlling the
privileges established for the requester process.

- Clock Task (CLOCK): It provides SYSTASK with timer
functions and other time related services.

- Process Manager (PM): It allocates PIDs to each
process in MUK namespace. It also notifies events
through signals to the destination processes.

- File System Server (FS): It manages directories and files
stored in block devices [22].

- Disk Task (RDISK): It manages a virtual disk mapped on
an OS-host regular file. RDISK can run replicated on
several nodes, but this option was disabled [23].

- Information Server (IS) and Web Information Server
(WIS): It allows to get configuration, status and
statistical information of each MUK server or task. It
can be visualized in plain text mode (IS) or in HTML
(WIS) format through a web browser.

- Web Server (NWEB): It is a web server of static web
pages stored by the FS. In the current version, NWEB
network access is made using the host-OS TCP/IP
protocol stack.

- File transfer server M3-IPC (M3FTP): It allows file
transfers to/from an external process belonging to the
same DC from/to a file stored in MUK filesystem. The
communication protocol used for the transfers is M3-
IPC (not TCP/IP).

The main MUK process with all of its threads, are
executed inside a Container of the OS-host which is a
member of a DC. In this way this property enables that any
MUK thread can communicate with other external processes
(local or remote) of the same DC.

Figure 3. MUK Prototype Architecture.

B. MUK Prototype Implementation

One benefit of any system made up by a set of
autonomous modules is that they can communicate through
well-established interfaces. This positive feature presents as
a negative one when trying to merge all of these modules
into a single one, breaking the isolation between them. One
of these issues refers to the names of global variables
because they are shared among the threads of the same
process. For example: The RDISK driver uses a global
variable called buffer, but as the FS server also uses its own
global variable called buffer a name collision happens.
Therefore, the global variables with the scope of a thread had
been renamed to avoid name collision with other. In this

way, the buffer variable of RDISK was renamed rd_buffer
and that of FS is now fs_buffer.

 A similar situation happens with the name of some
functions. For example, the function that handles the fork()
system call in PM is called do_fork(), same as in FS. These
functions were renamed as pm_do_fork() and fs_do_fork()
respectively.

 The SYSTASK has a shared memory area with the DVK
through the /sys/kernel/debug virtual filesystem. In this
memory area, the DVK stores the process descriptors of each
DC. Due to MUK tasks and servers are implemented using
threads, they share a memory space among them. Therefore,
process descriptors can be directly accessed from any other
MUK thread, or they can use memcpy() to get a copy of
them.

When MUK starts, its main thread starts the set of
component threads (tasks or servers) sequentially. Each
thread initializes its state, and registers itself with an
endpoint to the DVK (dvk_bind()) in order to use M3-IPC.
Once it is ready to serve its clients, it notifies the main thread
using Linux provided condition variables and mutexes.

MUK can be build integrating several tasks and servers,
but a configuration file is used to specify which threads will
be started and registered to the DVK. Each MUK instance,
must belong to a DC (dcid entry), and each of its threads
must have its own endpoint number (xxx_ep entries) (Fig. 4).
As each server needs other configuration parameters, they
can be configured using their own configuration files.

muk SERVER1 {
 dcid 0;
 pm_ep 0;
 fs_ep 1;
 is_ep 8;
 rd_ep 3;
 web_ep 22;
 ftp_ep 14;
 fs_cfg "molfs.cfg";
 rd_cfg "rdisk.cfg";
 web_cfg "m3nweb.cfg";
 ftp_cfg "m3ftp.cfg";
};

Figure 4. Example of MUK configuration file.

MUK also have its own tools to get thread information.
Sending a SIGUSR1 signal to the IS thread, it prints to an
output file the information of DC configuration parameters,
SYSTASK’s process descriptors, PM’s process descriptors,
FS’s process descriptors, FS’s superblocks of mounted
devices, etc.

The IS thread starts another thread for the WIS server. It
enables getting MUK information in HTML mode from a
Web Browser. Using the same approach of the provided
servers, any application included into the MUK code could
be monitored using the text mode o html mode interfaces.

Two main server applications were included into the
MUK prototype: a web server and a M3FTP server. The web
server only uses static web pages stored in files into the FS.

The current version of MUK prototype was implemented
on Debian 9.4 (called “stretch”) with a Linux kernel version
4.9.88. When MUK is running, its (virtual) memory usage is
about 89 Mbytes, with all the servers and task presented in

this paper as its components. The size of the MUK
executable file is only 852 Kbytes.

IV. PROTOTYPE EVALUATION

To evaluate the performance and the operation of the
prototype, two DVS nodes were used with the following
characteristics:

- NODE0: AMD A6-3670, 2.7 GHz, 8GB RAM.
- NODE1: Intel(R) Celeron(R) CPU G1820, 2.7 GHz,

4 GB RAM.
The nodes of the DVS cluster were connected through a

dedicated 1 Gbps LAN Switch. A notebook (Intel Core I5-
7200U CPU 2.71 GHz, 4 GB RAM) with Windows 10 was
used as the client for HTTP file transfers also connected to
the same LAN switch.

The data and message transfers between NODE0 and
NODE1 were performed using TIPC-based [24]
communication proxies. Although TCP or UDP proxies
could be used, the TIPC proxies showed superior
performance in previous evaluations [17]. The current TIPC
proxies have the following additional features such as
message batching and data compression.

To verify the versatility of MUK, it was tested in three
scenarios with different configurations:

 Config-A: All components are integrated on MUK,
including the RDISK task.

 Config-B: All components with the exception of
RDISK are integrated on MUK. RDISK runs as an
external local storage server.

 Config-C: All components with the exception of
RDISK are integrated on MUK. RDISK runs as a
remote storage server.

Several types of benchmarks were performed for each
configuration but, by space limitations, the following is
reported here: HTTP file transfer from a remote web Client
(wget), where remote means “on another computer” in the
same network (LAN). The same benchmarks were done on
an Apache web server as a reference for performance
comparison.

The file transfer benchmarks were done several times
with files sizes of 10 Mbytes and 50 Mbytes. The displayed
values are averages of the measurements. As all benchmarks
were done with dedicated computers and LAN switch, the
standard deviation of the results was negligible and
therefore, it is omitted here. The RDISK task was configured
to use an “in memory” disk image file and the Apache web
server used a document directory in a RAM filesystem to
eliminate the stochastic values of hard disk latencies.

The throughput of a remote Client file download is
presented in Fig. 5. In this case, the gaps between of Config-
A, Config-B vs. Apache are less noticeable because in all
cases the HTTP communications over the network between
the remote Client and the web Server has greater impact.
Config-C is doubly affected by data transfers over the
network with RDISK running on other node.

Another important metric for Unikernels is the boot time:
MUK process, with all of its threads, is started inside a DC
(which includes creating a Linux Container) in 22 [ms].

V. CONCLUSIONS AND FUTURE WORKS

Minix’s architecture based on a microkernel and device
drivers in user-mode has influenced in such a way that
INTEL has integrated it as part of several of its CPU chips
[25]. It uses message transfers to communicate processes,
servers and tasks. Those features facilitated its port to user-
space such as MoL. On the other hand, a DVS allows the
configuration of isolated execution environments (DCs)
(which can cover several related Linux Containers each),
scattered on nodes of a virtualization cluster.

The primary contribution of this work is to present MUK,
a Unikernel based on user-space multi-server VOS (MoL)
built to run on a DVS. MUK improves its security features
running within a DC which can cover one or more Linux
Containers. MUK components run integrated in one process,
but can use external services running on the same host or
distributed in several nodes of the DVS cluster without
changing the applications. The communication of MUK
components with other external (local or remote) servers is
transparent about server locations. From the operational
viewpoint, the MUK prototype works according to its design
specifications: simple, elastic, easy to deploy and manage.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

Config-A Config-B Config-C Apache

Th
ro

ug
hp

ut
 [M

By
te

s/
s]

Client wget 10 Mbytes

50 Mbytes

Figure 5. Client wget Throughput.

As MUK is POSIX-compatible it allows fast application
port and, because it is multi-server, more than one
component could run within the same Unikernel. As running
MUK on a DVS facilitates the deployment of Cloud
applications, programmers can focus on writing application
code instead of managing networks, protocols and hosts.

To fully test DVS features in several scenarios, other
VOS projects were started and remain in progress. The MUK
version presented in this article runs its servers as threads,
but at the time of this writing they can run as co-routines
[26]. A project just finished allows running UML [27] on the
DVS and an ongoing project is about running a rumpkernel
[19]. Running UML instances and rumpkernels concurrently
on a DVS will allow executing a wide range of existing
applications and it will definitely convince the community
about the advantages of using a DVS to deploy applications.

REFERENCES
[1] N. Bieberstein et al., "Service-Oriented Architecture Compass",

Pearson, ISBN 0-13-187002-5, 2006.

[2] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N.
Josuttis, "Microservices in Practice, Part 1: Reality Check and
Service Design", IEEE Softw. 34, pp 91-98, Jan. 2017, 2017.

[3] SOAP, https://www.w3.org/TR/?title=soap, last access at January
2019.

[4] J. Turnbull, “The Docker Book”, 2014, Available online at:
https://www.dockerbook.com/, last access at January 2019.

[5] N. Poulton, “The Kubernetes Book”, ISBN-13: 978-1521823637,
ISBN-10: 1521823634 ,2017.

[6] B. Hindman, et al., “Mesos: a platform for fine-grained resource
sharing in the data center”, Proc. of the 8th USENIX conference on
Networked systems design and implementation (NSDI'11), Berkeley,
CA, USA, 2011.

[7] P. Kamp, R. N. M. Watson, "Jails: Confining the omnipotent root", in
Proc. 2nd Intl. SANE Conference, 2000.

[8] D. Price, A. Tucker, "Solaris Zones: Operating System Support for
Consolidating Commercial Workloads", in 18th Large Installation
System Administration Conference,2004.

[9] W. Felter, et al., “An Updated Performance Comparison of Virtual
Machines and Linux Containers”, IBM Research Report, 2014.

[10] A. Madhavapeddy, et al., “Unikernels: library operating systems for
the cloud”, Proc. of the eighteenth international conference on
Architectural support for programming languages and operating
systems (ASPLOS '13), 2013.

[11] Anil Madhavapeddy and David J. Scott. 2013. “Unikernels: Rise of
the Virtual Library Operating System”, Queue 11, (Dec.2013).

[12] Unikernel.org; http://Unikernel.org/ last access at January 2019.

[13] P. Pessolani, O. Jara, "Minix over Linux: A User-Space Multiserver
Operating System", in Proc. Brazilian Symposium on Computing
System Engineering, Florianopolis, 2011.

[14] P. Pessolani, F. G. Tinetti, T. Cortés, and S. Gonnet, “An Architecture
Model for a Distributed Virtualization System“, Proceedings of the
Ninth International Conference on Cloud Computing, GRIDs, and
Virtualization (Cloud Computing 2018), págs. 1-11, 2018.

[15] Oikawa, M. Sugaya, M. Iwasaki and T. Nakajima, "Using virtualized
operating systems as a ubiquitous computing infrastructure", Second
IEEE Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems, Vienna, 2004.

[16] OpenSSI (Single System Image) Clusters for Linux,
http://www.openssi.org/cgi-bin/view?page=openssi.html, last access
at January 2019.

[17] P. Pessolani, T. Cortes, F. G. Tinetti, and S. Gonnet, “An IPC
Software Layer for Building a Distributed Virtualization System”, in
CACIC 2017, La Plata, Argentina, October 9-13, 2017.

[18] D. R. Engler, M. F. Kaashoek, J. O’Toole Jr., “Exokernel: an
operating system architecture for application-level resource
management”, in Proc. 15th ACM SOSP, Copper Mountain, 1995.

[19] Rumpkernel, http://rumpkernel.org/, last access at January 2019.

[20] IncludeOS, https://www.includeos.org/, last access at January 2019.

[21] Mirage, https://mirage.io/, last access at January 2019.

[22] D. Padula, M. Alemandi, P. Pessolani, S. Gonnet, T. Cortes, F.
Tinetti, “A User-space Virtualization-aware Filesystem”, in CoNaIISI
2015, Buenos Aires, 2015.

[23] M. Alemandi, O. Jara, “Un driver de disco tolerante a fallos”, (in
Spanish) Jornada de Jóvenes Investigadores Tecnológicos (JIT 2015),
Rosario, 2015.

[24] J. P. Maloy, "TIPC: Providing Communication for Linux Clusters",
Proceedings of the Linux Symposium, 2004

[25] A. Tanenbaum, “An Open Letter to Intel”,
https://www.cs.vu.nl/~ast/intel/, last access at January 2019.

[26] Libtask: a Coroutine Library for C and Unix.
https://swtch.com/libtask/, last access at January 2019.

[27] J. Dike, "A user-mode port of the Linux kernel", USENIX
Association. Proceedings of the 4th Annual Linux Showcase &
Conference, Atlanta Oct 10 -14, 2000.

