

ALUMNOS:

CERGNEUX, MARTÍN JESÚS LANDI, PABLO NICOLÁS TABOADA BERALDO, FERNANDO

CÁTEDRA:

PUENTE, GUSTAVO

DE MARCO, LUIS MARÍA

TUTOR:

MOSCATELLI, MAURO

TEMA: PFC-1312A

ESTUDIO Y REINGENIERÍA

FÁBRICA DE DEFLECTORES PARA CAMIONES

FECHA DE PRESENTACIÓN: 18 DE DICIEMBRE DE 2015

INDICE GENERAL

- A -PFC-1312A- ANEXO II
- B -PFC-1312A- ABSTRACT
- C-PFC-1312A- INTRODUCCION Y SITUACION PROBLEMATICA
- D-PFC-1312A- OBJETIVOS Y ALCANCES
- E-PFC-1312A- INGENIERIA BASICA
- F-PFC-1312A- INGENIERIA DE DETALLE
- G-PFC-1312A- MEMORIA DE CALCULOS
- H -PFC1312A- AGRADECIMIENTOS
- I –PFC-1312A- ANEXOS

Proyecto Final de Carrera

ANEXO II

Título del PFC:

Estudio de la Ingeniería de Métodos para la Producción en Línea de Accesorios de Fibra de Vidrio para Camiones.

Planteo de la problemática:

La empresa FIBRATEX de Concepción del Uruguay, al cambiar su localización, necesita Rediseñar su Línea de Procesos para mejorar técnicamente su Producción.

Objetivos:

- Análisis y descripción del proceso de elaboración de deflectores de aire para camiones.
- Estudio de las actividades productivas e improductivas de las operaciones aplicando técnicas de Ingeniería de Métodos para así optimizar el proceso.
- Diseño de la línea de Producción utilizando los principios de la Ingeniería Industrial.
- Organización y optimización del espacio físico existente.
- Estudio de los tiempos.
- Estudio de Seguridad e Higiene.
- Cálculo eléctrico, de gas y de aire comprimido.
- Elaborar los diagramas de proceso y de flujo o recorrido, según el proceso.

Marco teórico de referencia y del estado del arte:

La fabricación de estos accesorios se realiza en base a la experiencia que cada empresa fue adquiriendo, y que a lo largo de los años ha optimizado reduciendo costos y manteniendo o elevando su producción. En este caso se desea optimizar los recursos y elevar la productividad haciendo un estudio desde la perspectiva que brinda la Ingeniería Industrial.

A pesar de existir varias empresas que fabrican estos productos, no existe material bibliográfico en lo que se refiere al este tipo de producción. A su vez la bibliografía existente sobre estudio y diseño de procesos es muy amplia y suficiente. La ubicación geográfica de la empresa es buena ya que se encuentra sobre la Autovía Nacional 14.

A tales fines este proyecto se basará en:

- Bibliografías varias referentes al diseño y estudio de Procesos Industriales.
- Bibliografías asociadas a procesos de fabricación equivalentes.
- Ley 19587 de Higiene y Seguridad Laboral, Dec. 351/79 y reglamentaciones.
- Reglamentación AEA.
- Reglamentación de la Asociación Argentina de Luminotecnia AADL.
- Bibliografías varias referentes a Sistemas de Aire Comprimido.
- Norma NAG sobre instalaciones de Gas Natural.

Alcances:

Contempla:

- Diseño de la línea de producción (layout) con estudio de los tiempos.
- Ingeniería de detalle del sistema eléctrico (Fuerza Motriz, e Iluminación).
- Ingeniería de detalle del sistema de aire comprimido.
- Ingeniería de detalle de instalación de gas natural.
- Cálculo de stock necesario para abastecer la producción.
- Presupuesto de la ingeniería y maquinarias necesarias.

No contempla:

- Diseño de la nave industrial (existente).
- Diseño y cálculo de los diferentes modelos de deflectores y accesorios.
- Ingeniería de detalle de las máquinas y herramientas intervinientes.
- Ingeniería de detalle del proceso de pintura.

Metodología General:

Para lograr un correcto diseño de la cadena de producción realizaremos:

- Análisis de las piezas a fabricar (movimientos, dimensiones, pesos, manipulación).
- Organización detallada de la línea de producción.
- Estudio de los tiempos.
- Ingenierías en Instalaciones neumáticas, eléctricas y de gas natural.

Impacto:

Económico y social:

- Mejora en la rentabilidad de la empresa.
- Mejora en las condiciones de trabajo, Higiene y seguridad para los operarios.
- Calidad y confiabilidad de los productos

El impacto ambiental será analizado.

Cergneux, Martín Landi, Pablo Taboada, Fernando

Moscatelli, Mauro Tutor Puente, Gustavo Docente

PFC-1312A- ESTUDIO Y REINGENIERIA FABRICA DE DEFLECTORES PARA CAMIONES

The aim of this project is to present Reengineering Production deflectors for FIBRATEX's company trucks, where several researches of methods and production times were made with the aim of improve the productive line. Therefore, an accurate calculation for the installation of lighting, electric power, compressed air, gas, safety and industrial hygiene services was made.

Last but not least, a financial investment study was also conducted to determine the internal rate of return.

En el presente proyecto se presenta la Reingeniería de Producción de Deflectores para camiones en la empresa FIBRATEC, donde se realizó un estudio de Métodos y Tiempos con el fin de replantear la Línea de Producción, como así también en base a esta nueva línea de producción se realizó el cálculo de instalación de servicios de: iluminación, potencia eléctrica, aire comprimido, gas y seguridad e higiene industrial. También se llevó a cabo un estudio de inversión financiera para determinar la tasa interna de retorno.

C-PFC-1312A- INTODUCCIÓN Y SITUACIÓN PROBLEMÁTICA

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - www.utn.edu.ar

C-PFC-1312A- Introducción y Situación Problemática-V01

3- C-PFC-1312A- Introducción y Situación Problemática-V01

3-1- Introducción

La empresa FIBRATEX se dedica a la construcción y reparación de accesorios de fibra de vidrio para camiones, se encuentra ubicada en la ciudad de Concepción del Uruguay, provincia de Entre Ríos.

Nació hace diez años como un Microemprendimiento con la idea de la reparación de accesorios de fibra de vidrio (Plásticos Reforzados con Fibra de Vidrio - PRFV), pero a lo largo del tiempo comenzaron a implementar la fabricación de deflectores para camiones, aprovechando todos sus conocimientos y experiencia en el manejo de PRFV, siendo hoy en día su tarea más importante.

Actualmente las instalaciones se encuentran a la vera de la Autovía Nacional N°14 José Gervasio Artigas, a 1km del acceso a la ciudad de Concepción del Uruguay, este dato tiene vital relevancia a la hora del planteo de la problemática.

Originalmente la empresa se encontraba ubicada dentro de la ciudad de Concepción del Uruguay, pero luego fue relocalizada al lugar actual, lo cual le dio un cambio radical en la demanda de su producto, debido a:

- La oportuna visión estratégica de radicarse frente a lo que sería una vía de mucho tráfico, puso a la empresa en inmejorables condiciones para mostrar su producto.
 - Mayor número de camiones que circula por frente de sus instalaciones, lo que le dio un mayor reconocimiento.
 - Facilidad para que las unidades puedan detenerse para la colocación de los deflectores.

Preparo:	Reviso:	Página 1 de 2
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 6-4-15	

C-PFC-1312A- Introducción y Situación Problemática-V01

o Mejoramiento en el acceso hasta las instalaciones de la empresa.

El crecimiento exponencial de la demanda, conduce a tomar decisiones táctico estratégicas orientadas a la producción en línea. Aquí nace el punto de partida de la problemática a resolver por el presente proyecto.

3-2- Situación problemática

Esta nueva meta que se ha dispuesto lograr la empresa, merece un minucioso estudio organizacional del desarrollo del proceso productivo que se debe implementar, como así también las reformas en las instalaciones de la planta y los equipos que se deben adquirir para llevar a cabo de manera satisfactoria esta nueva etapa que comienza a partir de este análisis.

Preparo:	Reviso:	Página 2 de 2
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 6-4-15	

D-PFC-1312A- OBJETIVOS Y ALCANCES

C-PFC-1312A- Objetivos- Alcances Plan de trabajo-V01

4-C-PFC-1312A- Objetivos- Alcances Plan de trabajo-V01

4-1- Objetivos

Objetivo general

- 1. Reingeniería proceso elaboración de deflectores en la empresa Fibratec.
 - ✓ Describir el método de trabajo actual de las actividades del proceso.
 - ✓ Identificar las actividades improductivas y productivas con el fin de simplificarlas, reducirlas, combinarlas y en el mejor de los casos eliminarlas.
 - ✓ Elaborar los diagramas de proceso y de flujo o recorrido, según el proceso.
 - ✓ Diseño de la línea de Producción utilizando los principios de la Ingeniería Industrial.
 - o Organización y optimización del espacio físico existente.
 - o Estudio de los tiempos.
 - o Estudio de Seguridad e Higiene.

2. Ingeniería electromecánica:

✓ Electricidad, gas y aire comprimido.

4-2- Alcances:

Contempla:

- ✓ Diseño de la línea de producción (layout) con estudio de los tiempos.
- ✓ Ingeniería de detalle del sistema eléctrico (Fuerza Motriz, e Iluminación).
- ✓ Ingeniería de detalle del sistema de aire comprimido.
- ✓ Ingeniería de detalle de instalación de gas natural.
- ✓ Cálculo de stock necesario para abastecer la producción.
 - o producción diaria de 5 deflectores por día.
- ✓ Presupuesto de la ingeniería y maquinarias necesarias.

No se contempla:

- ✓ Diseño de la nave industrial (existente).
- ✓ Diseño y cálculo de los diferentes modelos de deflectores y accesorios.
- ✓ Ingeniería de detalle de las máquinas y herramientas intervinientes.
- ✓ Ingeniería de detalle del proceso de pintura.

4-3-JUSTIFICACIÓN DEL PROYECTO

- 1- Identificar los elementos productivos y no productivos
- 2- Identificar otras variables que inciden en demoras del proceso de elaboración.
- 3- Permitir evaluar la capacidad operativa, e introducir aquellas mejoras en la Eficiencia Operativa y la Tasa de Calidad.
- 4- Optimación del ambiente de trabajo (iluminación, distribución de partes, herramientas de mano, toma corriente, bocas de aire, etc.)

4-4- LIMITACIONES

- ✓ Sistema Documentado No existe:
- ✓ La empresa no cuenta con suficiente registros de control de la producción.
- ✓ La empresa no proporciona material descriptivo del proceso.
- ✓ La empresa carece de datos de las maquinarias usadas en el proceso.

Preparo:	Reviso:	Página 1 de 2
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 6-4-15	

C-PFC-1312A- Objetivos- Alcances Plan de trabajo-Rev1

ANEXO A - PLANIFICACIÓN

El/los Alumnos con Proyectos aprobados (Anexo-II) deben seguir el siguiente plan de trabajo, acordando las fechas y etapas con el Ayudante de Trabajo Práctico para su revisión ordenada y consensuada, en vista a la aprobación final de cada documento por parte del titular de la asignatura PFC.

Plan de Entreg			e Entrega	ıs para:
PLAN DE ENTREGAS PARCIALES		Rev00	Rev01	Aprob.
A-Anexo II – PFC-14XXY- (TITULO-Autores)	1º	12-13		
B-PFC-1312A- Carátula-Resumen Ejecutivo- Agradecimientos	80	09-14		
C-PFC-1312A - Introducción y Situación Problemática-Rev00.	2°	04-15	Ok	
D-PFC-1312A - Objetivos-Alcances Plan de Trabajo-Rev00.	3°	04-15	Ok	
E-PFC-1312A - Ingeniería Básica-Rev00.	4º			
F-PFC-1312A - Ingeniería de Detalles-Rev00.	5°			
G-PFC-1312A - Memorias de Cálculo-Rev00.	6°			
H-PFC-1312A - Anexos Complementarios-Rev00.	6°			
I-PFC-1312A - Presentación Para la Defensa-Rev00	7°			
FECHA ESTIMADA DE PRESENTACIÓN Anexo-III + 1 Copia Papel + 3 Copias DVD			07-15	
Fecha Defensa Pública			08-15	

Preparo:	Reviso:	Página 2 de 2
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 6-4-15	

E-PFC-1312A-INGENIERIA BASICA

Ingeniería Básica <u>Índice</u>

1. <i>1</i>	Introducción	3
1.1.	. ¿Qué es un deflector de aire para camiones?	3
1.2.	. ¿Qué ventajas brinda la utilización del mismo?	4
1.3.	. ¿Por qué se fabrican de PRFV?	4
2.	Legislación y normativa aplicada	4
3. I	Diagrama de Bloque propuesto para la nueva forma de	5
ı	Producción	
3.1.	. Propuestas de mejora en los distintos sectores de la producción	7
3.1.	.1. Moldeo	7
3.1.	1.1. Colocación del Gel-coat (Gelcotera)	7
	1.2. Operación de Laminación	7
3.1.	.2. Curado	7
3.1.	.3. Desmolde	7
3.1.	.4. Pre-terminación	7
3.1.	.5. Terminación	8
3.1.	.6. Empaque	8
3.1.	.7. Stock de producto terminado	8
3.1.	.8. Colocación	8
4.	Estudio de Ingeniería de métodos	8
5. <i>i</i>	Layout	9
5.1.	. Layout 2d	9
5.2.	. Layout 3d	10
5.3.	. Propuesta de Nueva forma de producción	11
6.	lluminación	12
6.1.	. Consideraciones para selección de Luminarias y Lámparas	12
6.2.	. Sectores a iluminar	13
7. .	Instalación Eléctrica de Potencia	13
8.	Instalación Neumática	13
9. I	Instalación de Gas	14

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 1 de 16

<i>10.</i>	Estudio de Seguridad e Higiene Industrial	14
10.1.	Ventilación	14
10.2.	Colores de seguridad	14
10.3.	Señalización, cartelería e indicadores	15
10.4.	Levantamiento manual de cargas	15
10.5.	Orden y limpieza	15
10.6.	Ruido	15
10.7.	Protección contra incendio	16
10.8.	Salida de Emergencia	16
10.9.	Elemento de protección personal	16
10.10	. Instalaciones sanitarias	16

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 2 de 16

1. Introducción

1.1. ¿Qué es un deflector de aire para camiones?

Es un elemento que se utiliza para mejorar la aerodinámica de los camiones respecto al acoplado que llevan, cualquiera sea el tipo y la carga. Se coloca sobre la cabina de los camiones y permiten que no se produzca el choque de aire directamente sobre el acoplado de los mismos.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 3 de 16

1.2. ¿Qué ventajas brinda la utilización del mismo?

La ventaja que genera la utilización de estos deflectores es un ahorro considerable de combustible, se ha comprobado una disminución de un 10% de ahorro o más.

Es por ello que el producto que se fabrica tiene una gran demanda debido al gran ahorro económico que les genera a los clientes.

1.3. ¿Por qué se fabricar de PRFV?

Estos se fabrican de PRFV, debido a las grandes ventajas que brinda este material, las cuales son:

- Alta resistencia mecánica
- Bajo peso, facilitando el transporte e instalación
- Alta resistencia a la corrosión y la intemperie
- Bajo costo
- Bajo mantenimiento

2. Legislación y normativa aplicada

Leyes aplicadas

Ley de seguridad e higiene № 19.587, reglamentación Decreto № 351/79 Ley N°6260 (Prov. Entre Ríos) Prevención y Control de la Contaminación por parte de las Industrias y decreto reglamentario N°5837 M.B.S.C. y E. Ley 24.557, con las modificaciones introducidas por la Ley 24.938 y el Decreto 1278/00

Normas consultadas

Iluminación DIN 5035

Normas Eléctricas AEA (asociación electrotécnica argentina)

Normas IRAM 4524 de dibujo técnico

GAS – NAG 201 - Disposiciones, normas y recomendaciones para uso de gas natural en instalaciones industriales. (GN-GL)

Otra bibliografía

Manual OSRAM de luminotecnia

Organización Internacional del Trabajo, "Introducción al Estudio del Trabajo", Cuarta edición, Editorial: Noriega-Limusa, México D.F., 1998

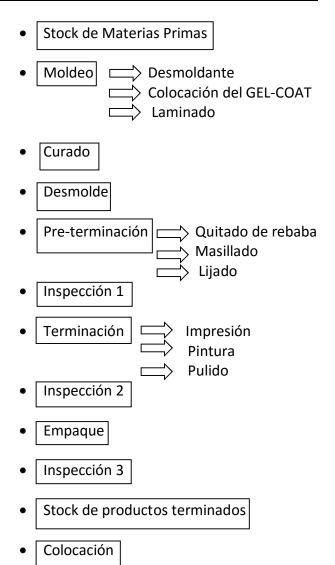
MAY NARD, H.B. Manual De Ingeniería Y Organización Industrial. Editorial Reverte Colombina, 3era Edición, México, 1990.

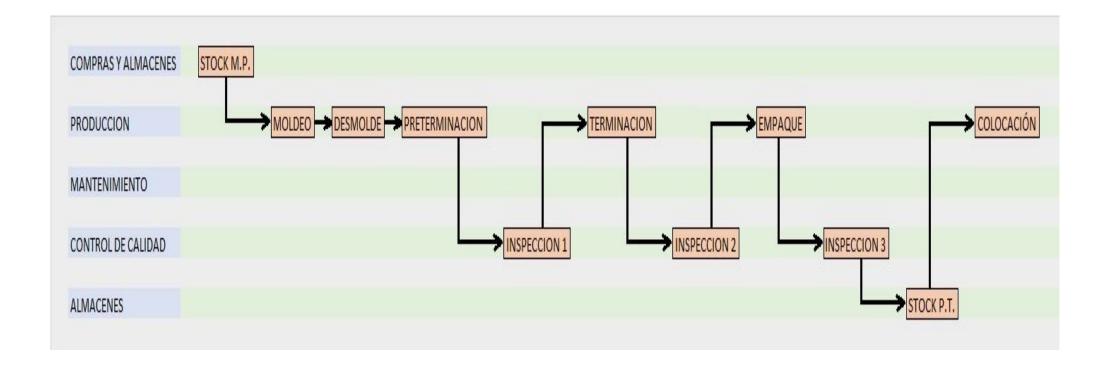
NIEBEL, Benjamín. Ingeniería de Métodos, Tiempos y movimientos. Editorial Alfa Omega, 3era Edición, México, 1992.

Programas utilizados

Dialux: cálculo de iluminación Autocad: Dibujos de Planos 2d Archicad: Dibujos de planta en 3d

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 4 de 16


3. Diagrama de Bloque propuesto para la nueva forma de Producción


Para poder analizar la producción actual, se realiza un diagrama de bloque el cual permite analizar las operaciones, materias primas y productos, condiciones de operación, etc.

Este diagrama además permitirá:

- Documentar el proceso para comprenderlo de la mejor manera.
- Estudiar tiempos y forma de producción.
- Ver las actividades en su conjunto, sus relaciones y cualquier incompatibilidad, cuello de botella o fuente de posible ineficiencia.
- Mejorar el proceso, objetivo del presente proyecto.

Detalles de las actividades dentro de los bloques

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 6 de 16

3.1. Propuestas de mejora en los distintos sectores de la producción

Se enumeran las propuestas de mejora para cada una de las zonas de trabajo, que luego se especificarán en la ingeniería de detalle.

3.1.1. Moldeo

3.1.1.1. Colocación del Gel-coat (Gelcotera)

• Se cambiará la forma de aplicación del Gel-coat

3.1.1.2. Operación de Laminación

Se proponen dos mejoras:

- Confinación del ambiente de Laminado
- Modificar la forma de Laminado. Selección de Maquina Laminadora

Ver Ingeniería de detalle.

3.1.2. Curado

Selección de cabina de curado, de manera de lograr un curado en menor tiempo.

3.1.3. Desmolde

Optimización de los espacios con nueva distribución en planta. (Ver Nuevo Lay out)

3.1.4. Pre Terminación

Quitado de rebaba, masillado y lijado:

Mejoras en las condiciones de trabajo, que permite mejorar los tiempos de producción, la calidad del producto y las condiciones de trabajo del operario.

- Iluminación
- Sistema de aire comprimido
- Extractores de Aire
- Confinar el ambiente

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 7 de 16

- Nuevas máquinas de lijar neumáticas
- Nuevos tableros eléctricos
- Stock de Materias prima por ubicado en la zona de trabajo.

3.1.5. Terminación

Impresión, pintado y pulido:

Nueva cabina de pintura, Las mejoras de la cabina son:

- Iluminación
- Ambiente cerrado con calefacción
- Extractores de aire
- Nuevo sistema de aire comprimido (red y compresores)
- Nuevas pistolas de pintado

3.1.6. Empaque

Se plantea un sistema de empaque en papel Film y un nuevo sistema de código de barras que será colocado en cada uno de ellos que permitirá identificarlos y mejorar el control de stock de productos terminados.

3.1.7. Stock Producto Terminado

Se propone el diseño de soportes que permiten estoquear los productos terminados dejándolos bien organizados y sin riesgo de que se puedan dañar. (ver Dibujo 3d)

3.1.8. Colocación

Se mejorará la distribución de las herramientas ya existentes y se seleccionarán herramientas neumáticas nuevas necesarias para facilitar la colocación de los deflectores.

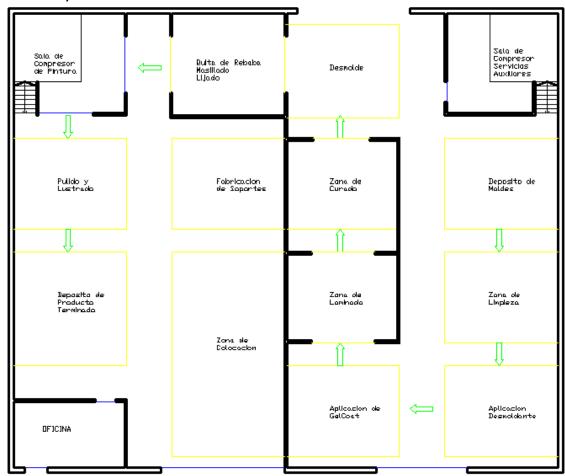
4. Estudio de ingeniería de métodos

Se efectúa una introducción del estudio de ingeniería de métodos.

La industria actualmente no cuenta con documentación alguna, ni soporte técnico de algún programa que permita un mejor control y la organización del mismo. Se realizará:

- 1. Una codificación de las matrices existentes
- 2. Un estudio de la estructura del producto
- 3. Una explosión del producto (ver anexo III)
- 4. Estudio de tiempos a través de análisis de Lean Manufacturing

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 8 de 16


Todo esto anteriormente expuesto podrá verse desarrollado en la memoria de cálculo del proyecto.

5. Layout

Debido al resultado del Estudio de Ingeniería de Métodos, se diseña un nuevo layout que integra de forma sistemática las características de los productos, los volúmenes de producción y los procesos productivos necesarios.

Se propone un método de producción en línea, para lo cual se organizaron las áreas de producción de tal manera que el Layout permita que el producto sea fabricado a lo largo de un proceso continuo y secuencial hasta la obtención de un producto terminado, optimizando la gestión de las materias primas, planificación de servicios y la organización de depósitos y disminución de los Siete Desperdicios de Lean Manufacturing.

5.1. Layout en 2d

Para determinar la ubicación física de los distintos sectores de la planta, sus maquinarias y equipos correspondientes, puestos de trabajo, almacenes, demás dependencias que hacen al funcionamiento y los movimientos que debe realizar el producto desde la etapa de materia prima hasta el producto terminado se tuvieron en cuenta los siguientes objetivos:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 9 de 16

- Incremento de la producción.
- Disminución en los retrasos de la producción.
- Ahorro de área ocupada.
- Acortamiento del tiempo de fabricación.
- Disminución de la congestión o confusión.
- Facilidad de ajuste a los cambios de condiciones.
- Reducción del riesgo para la salud y aumento de la seguridad de los trabajadores.

De esta manera se logró que tanto las áreas de trabajo, de equipos y pasillos estén ubicadas y dimensionadas de forma que sean económicas para el trabajo y al mismo tiempo seguras y satisfactorias para los operarios.

En el plano N°= PLO1 se encuentra representado el Layout diseñado con sus dimensiones acotadas. (Ver anexo I)

5.2. Layout en 3d

Creación de un modelo de la fábrica digital 3D, que permite evaluar múltiples escenarios hipotéticos de diseño para determinar la mejor solución y así optimizar su operación.

La nueva forma de distribución en planta del proceso, es la que se ve en la próxima figura dibujada a partir del programa Archicad 3d.

Se anexa para la ingeniería de detalle todo el programa, con todos los cambios propuestos. (ver anexo II)

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 10 de 16

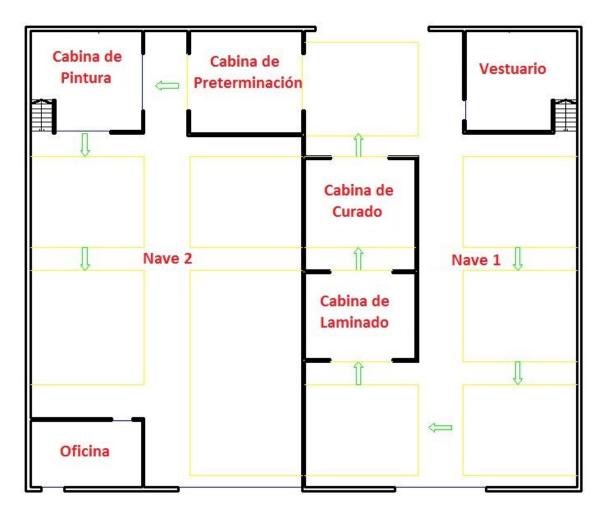
5.3. Propuesta de una nueva forma de producción

En la nueva Organización de Producción las **Áreas de Producción** se organizarán según la agrupación de tareas que realiza en la línea cada operario, éstos tienen asignadas tareas específicas del proceso de la siguiente manera:

El nuevo plantel será formado por seis operarios, un pintor, un encargado de Control de Calidad de todos los pasos del proceso productivo y un encargado de Producción y Ventas.

Operario	Áreas	Tareas asignadas
1	Matrices	- Selección de moldes
		- limpieza de moldes
		 aplicación de agente desmoldante
		- aplicación de gel coat
2	Laminado	- laminado
3 y 4	lijado	- desmolde
		- quitado de rebabas
		- masillado
		- lijado
Pintor	Pintura	- pintura
5	Lustrado y	- pulido
	empaque	- lustrado
		- empaque
6	Soportería y	- realizar soportería
	colocación	 colocación de productos
Control de	Control de	- control de calidad de todos los sectores
Calidad	Calidad	
Encargado de	producción	 encargado de producción
producción		- ventas

Diariamente el encargado asigna al operario encargado de matrices los modelos que se comenzarán ese día, mientras que el resto del plantel prosigue con la producción según fue comenzada cronológicamente.


La forma de producción sigue siendo **contra pedido**, el dueño solicita la fabricación de un deflector según pedidos de clientes. Se cuenta con stock de un deflector de cada modelo semi-terminado pintado con fondo.

Para la colocación de los mismos se acuerda con el cliente un día, una vez que se tiene el deflector terminado y los anclajes para dicha colocación. Por ello es clave tener una buena coordinación entre la fabricación de los deflectores y de los anclajes.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 11 de 16

6. Iluminación

Según las tareas desarrolladas se realiza una división de la nave en sectores para efectuar la iluminación.

Se optará por un alumbrado general de forma de obtenerse una iluminación uniforme sobre toda la zona a iluminar, este sistema presenta la ventaja de que la iluminación es independiente de los puestos de trabajo, por lo que estos pueden ser cambiados en la forma que se desee ante la cualquier necesidad. Proporciona las mejores condiciones de visibilidad, dando al ambiente un aspecto sereno y armonioso.

6.1. Consideraciones para la selección de Luminarias y Lámparas

Para la selección de las luminarias y lámparas se tiene en cuenta el campo de aplicación de las mismas y el tipo de iluminación que se desea logra para obtener la iluminación media requerida en cada sector. Para ello se utiliza el manual de luminotecnia de la AADL y la norma DIN 5053.

Se busca obtener un alto rendimiento luminoso acompañado de estética y un bajo costo de mantenimiento en instalación.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 12 de 16

6.2. Sectores a Iluminar

Como se observa en la anterior figura hay ocho sectores a iluminar:

Sector	Actividad
1	Nave industrial
	N°1
2	Nave industrial
	N°1
3	Cabina de
	Laminado
4	Cabina de curado
5	Vestuarios y
	baños
6	Cabina de
	Preterminación
7	Cabina de pintura
8	Oficina

Se podrá observar en Anexo IV, el cálculo de la iluminación de cada sector realizado con el programa Dialux.

7. Instalación Eléctrica de Potencia

La instalación eléctrica se conecta a la red eléctrica de distribución en baja tensión, con una bajada trifásica.

La misma constará de un Tablero general de BT del cual se distribuirá sobre bandejas y cañerías hasta los tableros secundarios y toma corrientes. Como podrá verse en los planos PLE01 – PLE02, del anexo I.

Cada circuito contará con su sistema de protección, se anexa el diagrama unifilar en la ingeniería de detalle. Ver anexo I PLE03 – PLE04 – PLE05

8. Instalación Neumática

La planta contará con dos estaciones de aire comprimido, una para el abastecimiento de herramientas neumáticas y otra para la cabina de pintura.

En los planos PLA01 y PLA02 se representa en forma esquemática la disposición de las redes de aire comprimido y los distintos puntos de consumo.

La estación compresora 1 abastecerá de aire a presión a la cabina de pintura.

La estación compresora 2 abastecerá los diferentes sectores de la nave en los cuales se haga uso de herramientas neumáticas.

Las tuberías de distribución serán de acero, aéreas, amuradas con ménsulas y las conexiones a las herramientas se harán mediante mangueras neumáticas cumpliendo las reglas especificadas en la bibliografía aplicada (Carnicer Royo).

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 13 de 16

Se seleccionarán dos compresores iguales del 100% de la capacidad instalada, con el fin de en caso de avería o mantenimiento de uno de ellos poder abastecer ambas zonas con un solo equipo.

9. Instalación de Gas

Se instalará una línea de gas natural conectada a la red local, que abastecerá el consumo de la Cabina de Pintura seleccionada y la calefacción de la Cabina de Curado.

La misma constará de un gabinete con conexión a la red y se distribuirá mediante cañerías aéreas hasta los consumos, cumpliendo las normas del ente distribuidor GasNEA y norma NAG201.

(Ver anexo I, PLG01 – PLG02)

10. Seguridad e Higiene

De acuerdo a la Legislación vigente (Ley 19587, aprobada por el Decreto 351/79) se llevarán a cabo las siguientes mejoras:

10.1. Ventilación

Teniendo en cuenta que el factor de ocupación, cuyo trabajo es de actividad moderada (Ventilación mínima requerida en función del número de ocupantes), y el volumen del local, la ventilación es más que satisfactoria, no necesitando ningún tipo e inyector de aire.

Pero teniendo en cuenta los Art. 67 y Art. 68, Decreto 351/79, y la producción de polvillo de lijado, en la cabina de pre terminación la prioridad a seguir es:

Proveer a los trabajadores de barbijo, estos se deberán emplear cuando estén utilizando lijadoras.

También teniendo en cuenta los Art. 69 y Art. 70, Decreto 351/79, donde existen sistemas de extracción:

- Colocar campanas de extracción en las zonas de lijado, evitando así la suspensión en el aire de polvillo de lijado. Donde dicha extracción será instalada de modo que no produzcan contaminación ambiental durante las operaciones de descarga o limpieza.
- Evitar la acumulación de dicho polvillo y partículas de polvo de mayor tamaño que no haya sido capturado por las campanas, o sea el que se encuentra en el piso, retirándolo diariamente. Lo mejor en este caso sería contar con una aspiradora para evitar el barrido y luego colocarlo en bolsas para su posterior desecho.

10.2. Colores de seguridad

- Pintar de verde claro el plano de trabajo de las máquinas.
- Pintar de azul los interruptores de las máquinas.
- Delimitar con líneas amarillas los sectores de trabajo.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 14 de 16

Demarcar los pasillos de circulación con líneas de color blanco, como así también las zonas de almacenamiento.

10.3. Señalización, cartelería e indicadores

- Colocar carteles de salida de emergencia, ubicados en la parte superior de cada salida.
- Colocar señalización correcta de los extintores según su clase de fuego.
- Colocar carteles de riesgo eléctrico en tableros.
- Colocar carteles de obligación de usar protector auditivo.
- Colocar carteles de obligación de utilizar barbijo en sectores de lijado.
- Colocar carteles de prohibido fumar.
- Colocar carteles a las máquinas:
 - No quitar resguardos
 - No realizar reparaciones con la maquina en funcionamiento.
- Pintar las máquinas con sus respectivos colores de seguridad.

10.4. Levantamiento manual de cargas:

Proveer de faja lumbar y colocar cartelería de obligación de utilizarla en los sectores donde sea necesario su uso.

10.5. Orden y limpieza:

- Correcto uso y guardado de las herramientas de mano en su derivado tablero
- Despejar de las vías de circulación toda clase de obstáculos
- ➤ Retirar todos los días la acumulación de polvillo de lijado, para evitar que se desparrame dentro del taller. La forma correcta para su recolección será aspirarlo y colocarlo en bolsas, para luego poder desecharlo controladamente.

10.6. Ruido

Deberá controlarse el uso de protección auditiva, cada vez que se esté utilizando la maquinaria.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 15 de 16

- Diseñar un lugar adecuado para mantener en forma las condiciones de los protectores.
- ➤ De ser necesario recordar periódicamente e insistentemente la manera y forma de uso de manera explicativa.
- Disminuir el ruido de los compresores alejándolos de la zona de trabajo.

10.7. Protección contra incendios

Ya que se dispone actualmente en la plantade seis (6) extintores manuales ABC de diez (10) Kg, en muy buenas condiciones, distribuidos adecuadamente, no es necesario un plan de mejoras.

10.8. Salida de emergencia

La puerta principal de acceso y la posterior se utilizarán como salida de emergencia, la misma en el estado que se encuentran, se abrirán en el sentido de circulación de la evacuación. La puerta restante no podrá utilizarse debido a que se encuentra cerrada en su mayoría, debido a la cantidad de gente no es necesaria la implementación de otros accesos de emergencias.

Se contará además con un sistema de luces de emergencia, que indiquen dichas salidas, y permitan tener una iluminación en caso de emergencia.

10.9. Elementos de protección personal

- Proveer antejos de seguridad, sobre todo para el uso donde puedan proyectarse partículas ofensivamente.
- Reemplazar el calzado actual por botines de seguridad con punteras de acero.
- Reemplazar protectores auditivos de copa por protectores auditivos en forma de tapón.
- Utilización de guantes de tejido.
- Designar un lugar adecuado para depositar los elementos luego de usarlos, conservando su limpieza.
- Elementos de protección personal para los encargados de pintura y de laminación.

10.10. Instalaciones sanitarias

El baño deberá poseer las instalaciones para cubrir las necesidades de los empleados según la ley de higiene y seguridad.

Colocación de un botiquín, con los elementos de primeros auxilios, el mismo será de color verde y contará con los elementos mínimos necesarios.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 16 de 16

F-PFC-1312A-INGENIERIA DE DETALLE

Ingeniería de Detalle <u>Índice</u>

1. Ir	ntroducción	3
2. L	egislación y normativa aplicada	3
3. D	Piagrama de Bloque propuesto para la nueva forma de	3
	roducción	
3.1.	Mejoras en los distintos sectores de la producción	6
3.1.1	Moldeo	6
3.1.1.	1. Colocación del Gel-coat (Gelcotera)	6
3.1.1.	2. Operación de Laminación	7
3.1.2	. Curado	9
3.1.3	. Desmolde	9
3.1.4	. Pre-terminación	9
3.1.5	. Terminación	10
3.1.5.	1. Impresión y Pintura	10
3.1.5.	2. Pulido	11
3.1.6	i. Empaque	11
3.1.7	'. Stock de producto terminado	11
3.1.8	s. Colocación	11
4. E	studio de Ingeniería de Métodos	11
4.1.	Codificación de Matrices	11
4.2.	Estructura del Producto	13
4.3.	Explosión de Materiales	15
4.4.	Estudio de Tiempos	16
5. L	ayout	18
5.1.	Layout 2d	19
5.2.	Layout 3d	19
5.3.	Propuesta de Nueva forma de producción	20
6. II	uminación	21
6.1.	Sectores a iluminar	22
6.2.	Iluminación Media	22
6.3.	Índice de reproducción cromática	23

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 1 de 41

6.4.	Selección de luminarias y lámparas	23
6.4.1.	Selección de luminarias	23
6.4.2.	Selección de lámparas	24
6.5.	Numero de luminarias a utilizar	25
7. In	stalación eléctrica lluminación y Potencia	25
7.1.	Circuitos Eléctricos	25
7.2.	Protecciones de Circuitos Eléctricos	26
7.2.1.	Protecciones de Circuitos de Iluminación	26
7.2.2.	Protecciones de Circuitos de Tomacorrientes	28
7.2.3.	Protecciones de Tableros	29
8. In	stalación Neumática	32
8.1.	Distribución	33
8.2.	Redes de Aire Comprimido	34
8.3.	Compresores Seleccionados	34
9. In	stalación de Gas	35
9.1.	Consumos	35
9.2.	Dimensionado de Tuberías	35
9.3.	Planta de Regulación y Medición	36
9.4.	Evacuación de Productos de Combustión	37
<i>10.</i>	Estudio de Seguridad e Higiene Industrial	37
10.1.	Ventilación	37
10.2.	Colores de seguridad	38
10.3.	Señalización, cartelería e indicadores	38
10.4.	Protección contra incendio	39
10.5.	Salida de Emergencia	39
10.6.	Elementos de protección personal	40
10.7.	Instalaciones sanitarias	40
11	Análisis Franómico	40

Preparo:	Reviso:		
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 2 de 41	

1. Introducción

Ver memoria. Se realiza todo el proyecto con la misma numeración base para que resulte más simple buscar relaciones entre Ingeniería Básica, Ingeniería de Detalle y Memorias de Cálculos.

2. Legislación y normativa aplicada

Leyes aplicadas

Ley de seguridad e higiene № 19.587, reglamentación Decreto № 351/79 Ley N°6260 (Prov. Entre Rios) Prevención y Control de la Contaminación por parte de las Industrias y decreto reglamentario N°5837 M.B.S.C. y E. Ley 24.557, con las modificaciones introducidas por la Ley 24.938 y el Decreto 1278/00

Normas consultadas

Iluminación DIN 5035

Normas Eléctricas AEA (asociación electrotécnica argentina)

Normas IRAM 4524 de dibujo técnico

GAS – NAG 201 - Disposiciones, normas y recomendaciones para uso de gas natural en instalaciones industriales. (GN-GL)

Otra bibliografía

Manual OSRAM de luminotecnia

Organización Internacional del Trabajo, "Introducción al Estudio del Trabajo", Cuarta edición, Editorial: Noriega-Limusa, México D.F., 1998

MAY NARD, H.B. Manual De Ingeniería Y Organización Industrial. Editorial Reverte Colombina, 3era Edición, México, 1990.

NIEBEL, Benjamín. Ingeniería de Métodos, Tiempos y movimientos. Editorial Alfa Omega, 3era Edición, México, 1992.

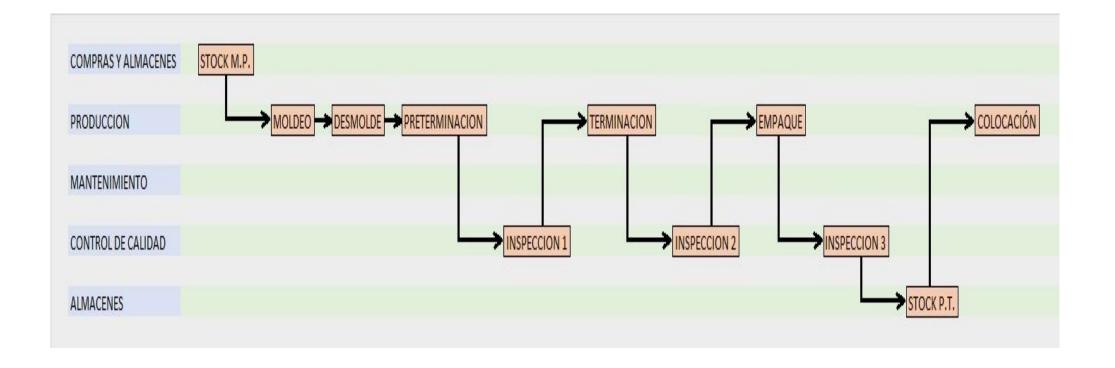
Programas utilizados

Dialux: cálculo de iluminación Autocad: Dibujos de Planos 2d Archicad: Dibujos de planta en 3d

3. Diagrama de Bloque propuesto para la nueva forma de Producción

PROPOSICION DE ALTERNATIVAS Y TOMA DE DECISION

A lo largo de varias reuniones en las cuales participaron tanto los directivos de la empresa como los empleados, se determinaron cuellos de botella del proceso de fabricación y se analizaron distintas alternativas de organización de la producción, llegando al resultado que propondremos a continuación.


Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 3 de 41

Este diagrama además permitirá:

- Documentar el proceso para comprenderlo de la mejor manera
- Estudiar tiempos y forma de producción.
- Ver las actividades en su conjunto, sus relaciones y cualquier incompatibilidad, cuello de botella o fuente de posible ineficiencia
- Mejorar el proceso, objetivo del presente proyecto.

Detalles de las actividades dentro de los bloques

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 5 de 41

3.1. Mejoras en los distintos sectores de la producción

3.1.1. Moldeo

3.1.1.1. Colocación del Gel-coat (Gelcotera)

La máquina seleccionada es de la marca **FFIBERMAQ**, y el modelo es **AIRLESS TM-04**, esta tiene excelente rendimiento y considerable economía de material dado que tiene una reducida emisión de partículas para el medio ambiente (evitando el desperdicio). Se suma a esto una economía comprobada de aproximadamente 50% en relación al consumo de catalizador en una máquina de gelcoat spray-up convencional.

Características

- Bomba propulsora, accionada por cilindro neumático, que fortalece el flujo estabilizado a través del pulmón acumulador de presión.
- Bomba esclava de alta precisión, en acero inoxidable, para dosificar el catalizador con faja de ajuste de 0,5 a 4,5% en volumen.
- Reservatorio para catalizador en polietileno can capacidad para 1 litro.
- Pistola aplicadora construida en aluminio durable, robusta y de bajo peso, accionada por pistón, con válvulas, picos y agujas en acero inoxidable
- Exclusivo sistema de mescla independientes. La mescla de los materiales es externa evitando así el riesgo de endurecimiento.
- Pulmón distribuidor con filtro, válvulas reguladoras de presión, manómetros y pico de limpieza. Juego de mangueras con 7,5 metros de largo.
- Coche de transporte.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 6 de 41

Datos adicionales

Productividad: 0,6 kg/min

Presión de trabajo: 70lb/pul2 = 4,92 kg/cm2
Consumo de aire: 8PCM (pie cubico/min)

3.1.1.2. Operación de Laminación

• Confinación del ambiente de Laminado

Instalación de una cabina de laminado que permite confinar el ambiente de trabajo, mejorando la calidad del producto, considerando que es una de las actividades más importantes del proceso.

Esta cabina cuenta con circulación y filtrado del aire. La cabina seleccionada será provista por la empresa ANGELFIRE

- Dimensiones útiles: Longitud: 5.000 mm. Ancho: 4.000 mm. Alto: 3.000 mm.
- Caudal ventilación: 20.000 m3/h. Impulsión: 20.000 m3/h. Extracción.
- Potencia motores: 7,5 CV + 7,5 CV.
- Potencia de alumbrado: 24 x 65 W (1.560 W).
- Paredes: Acristaladas aisladas. Cortinas laterales.
- Laminado: Laminadora de moldeo por contacto a inyección. Proceso INTER en modelo abierto.

Marca FIBERMAQ
Modelo INTER FLI-10

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 7 de 41

Aplica simultáneamente resina de poliéster pre-acelerada, catalizador dosado (Mekp) y fibra de vidrio (roving continuo) picada, siendo necesario apenas la aplicación con rodillo (asentamiento) de ésta.

Características

- Bomba propulsora de cilindro neumático de alta potencia, con relación 8:1 que favorece el flujo estabilizado a través de pulmón acumulador con aire comprimido.
- Bomba esclava de alta precisión, en acero inoxidable, para dosaje del catalizador (MEK-P) con franja de ajuste 0,5 a 4,5%.
- Pistolas aplicadora construida en aluminio durable, robusta y de bajo peso, con válvulas, picos, agujas en acero inoxidable, uniones y bujes de silicona.
- Motor neumático de alta potencia acoplado a la parte superior de la pistola aplicadora, compuesto por rotor porta lámina, rodillo prensa hilo y tubos de aire para expulsión de la fibra de la cámara de corte.
- Pulmón distribuidor con filtro, válvula reguladora de presión, manómetro y pico de limpieza.
- Juego de manguera con 7,5 metros de largo.
- Coche de transporte con columna fija y brazo giratorio tipo pantógrafo con alcance de 6 metros.

Preparó:		Revisó:	
Pablo Landi/Fernando Ta	boada/Martín Cergneux	Gustavo Puente 11-2015	Página 8 de 41

Datos adicionales

Productividad: 5kg/min.

Presión de trabajo: 100lb/pul² = 7kg/cm²

Consumo de aire: 25 PCM (pie cúbico/min)

3.1.2. Curado

Se realizará una sala de curado con calefacción y ventilación que permitirá mejorar las condiciones de humedad y temperatura, de manera de lograr un curado en el menor tiempo.

Esta cabina cuenta con calefacción, acondicionamiento, circulación y filtrado del aire. Las características se encuentran dentro de la selección de la cabina, la cual es similar a una cabina de pintura.

La cabina seleccionada será provista por la empresa ANGELFIRE

- Dimensiones útiles: Longitud: 5.000 mm. Ancho: 5.000 mm. Alto: 3.000 mm.
- Caudal ventilación: 20.000 m3/h. Impulsión: 20.000 m3/h. Extracción.
- Potencia motores: 7,5 CV + 7,5 CV.
- Potencia de alumbrado: 24 x 65 W (1.560 W).
- Paredes: Acristaladas aisladas. Cortinas laterales.
- Calefactores infrarrojos. Consumo 2 x 1,44 m³/h

3.1.3. Desmolde

Se optimizan los espacios con la nueva distribución en planta, para facilitar el trabajo de los operarios. (Ver Plano N°: PL001 – Anexo I)

3.1.4. Pre Terminación

Operaciones: Quitado de rebaba, Masillado, Lijado

Se instalará una sala de lijado con extracción de aire, que permitirá mejorar las condiciones ambientales, de manera que no haya tanto polvillo suspendido en el ambiente.

Cabina de preterminación provista por la empresa ANGEFIRE:

- Dimensiones útiles: Longitud: 5.000 mm. Ancho: 4.500 mm. Alto: 3.000 mm.
- Caudal ventilación: 20.000 m3/h. Impulsión: 20.000 m3/h. Extracción.
- Potencia motores: 7,5 CV + 7,5 CV.
- Potencia de alumbrado: 24 x 65 W (1.560 W).
- Paredes: Acristaladas aisladas. Cortinas laterales.
- Filtros

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 9 de 41

Mejoras en las condiciones de trabajo, que permite mejorar los tiempos de producción, la calidad del producto y las condiciones de trabajo del operario.

- Iluminación
- Sistema de aire comprimido
- Extractores de Aire
- Confinación del ambiente
- Nuevas máquinas de lijar
- Nuevos tableros eléctricos
- Stock de Materias prima por ubicado en la zona de trabajo.

3.1.5. Terminación

3.1.5.1. Impresión y Pintura

Se instalará una nueva cabina de pintura, la cual cuenta con todos los elementos necesarios para poder realizar la tarea de manera excelente. Las mejoras de la cabina son:

- Iluminación
- Ambiente cerrado con acondicionamiento de aire
- Extractores con filtros de aire
- Nuevo sistema de aire comprimido (red y compresores)
- Nuevas pistolas de pintado

Cabina de pintura: "Puesto de pintura rápida"

- Marca: ANGELFIRE
- Dimensiones útiles: Longitud: 5.000 mm. Ancho: 4.500 mm. Alto: 3.000 mm.
- Caudal ventilación: 20.000 m3/h. Impulsión: 20.000 m3/h. Extracción.
- Potencia motores: 7,5 CV + 7,5 CV.
- Potencia alumbrado: 24 x 65 W (1.560 W).
- Piso: Parcialmente enrejillado. Bandejas recogida residuos. Filtros de retención en seco.
- Paredes: Acristaladas aisladas. Cortinas laterales.
- Proceso. Secado mediante infrarrojos. Consumo 1,5 m³/h
- Varios: Purificador aire neumático pistolas. Purificador-lubricador aire neumático lijadoras. Electroválvula. Bases conexión infrarrojos 12 kW/220 V. Bases conexión 16 A/220 V.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 10 de 41

3.1.5.2. Pulido

Se provee un sector para el pulido y control de calidad de los productos terminados, previo al embalaje final.

3.1.6. Empaque

Sistema de empaque en papel Film y un nuevo sistema de código de barras que será colocado en cada uno de ellos que permitirá identificarlos y mejorar el control de stock de productos terminados. (ver memorias - estructura del producto)

3.1.7. Stock Producto Terminado

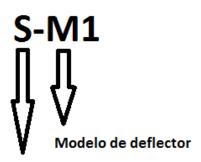
Soportes que permiten estoquear los productos terminados dejando bien organizados y sin riesgo de que se puedan dañar. (ver Dibujo 3d) (ANEXO II)

3.1.8. Colocación

Provisión de nuevas herramientas que facilitan la colocación.

Para la fabricación de los soportes se mejorará la distribución de las herramientas ya existentes y se incorporan nuevas solicitadas por los responsables de la tarea.

4. Estudios de ingeniería de métodos


4.1. Codificación de las matrices existentes

Codificación de las matrices existentes, la cual depende de la marca del camión y el modelo.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 11 de 41

ejemplo:

El deflector para un camión marca Scania modelo G380 le corresponde el deflector con el siguiente código:

Marca del camión

Cuadro con los distintos tipos de matrices

Marcas	Cantidad	Código por marca, modelo camión			
		y tipo matriz			
		S-M	11		S-M2
6		Se utiliza	a para:	Se u	tiliza para:
Scania	2 (dos)	112H			K310
		113	SH .		K340
		G34	10		K380
		G38	30		P310
					R112
					T112
					T114
				T124	
		V-M1	V-N	V 12	V-M3
Volvo	2 (dos)	B12B	FH		NL
		BRT	FM		VM
			N	И-M1	

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 12 de 41

		1114 1117 1316 1318	1214 1320	1215 1417	1218 1418	1315 1419
Mercedes	1 (μης)				1526	1622
Wichecaes	1 (uno)	1420 1517		1521		_
	(varían la alturas)	1624 1632	1634		1720	1728
		1918 2318	2325	2423		
		1.844		42		42
		I-M1	I-N			И З
lveco	2 (1)	160Stralis		or450		cargo
IVECO	3 (tres)	4910Stralis	curs	orE23		Thech
					Euro	Trakker
		V-M1			V-M2	2
		15160		Constellation		
		15180				
Volkswagen	2 (dos)	17240				
		17210				
		17310				
		18310				
		19320				
	2 (dos)	F-M1 F-M2		2		
Ford		Cargo (viejo)		Cargo	(nuev	၁)
Ford		Hasta el año				
		2004				
	1 (uno)	R-M1 SPACE MAGNUM				
Donoult						
Renault						
		MIDLUM				
		PREMIUM				

4.2. Estudio de la estructura del producto

Distintos niveles del producto

Nivel 0:

(Producto terminado a producir)

1. Deflector listo para colocar

Deflector Terminado listo para colocar, con código de barra y envoltorio.

Nivel 1:

(semielaborado o preparado)

1. Deflector listo para colocar

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 13 de 41

- 1. Deflector Terminado
- 2. Kid de instalación
- 3. Tensor Soporte
- 4. Soporte plegado
- 5. Etiquetas
- 6. Papel envoltorio (film)

Nivel 2:

(Insumos, materia prima o parte)

1. Deflector Terminado

- 1. Agentes desengrasante
- 2. Cera desmoldante
- 3. Alcohol polivinilico
- 4. Gel-coat
- 5. Resina
- 6. Fibra de vidrio
- 7. Catalizador
- 8. Acelerador
- 9. Masilla
- 10. Disco lijador
- 11. Lijas manuales
- 12. Impresión
- 13. Tiner
- 14. Pintura
- 15. Cera para pulir
- 16. Disco para pullir

2. Kit de instalación

- 1. Boulones de 8' milímetros
- 2. Tuercas 8'milimetros
- 3. Arandelas planas
- 4. Arandelas grower
- 5. Bolsas nylon

3. Tensor soporte

- 1. Planchuela ¾"
- 2. Pintura esmalte sintético
- 3. Disco de amoladora y para sensitiva

4. Soporte plegado

- 1. Chapa 8 milímetros de espesor, plegada en forma de "L"
- 2. Pintura esmalte sintético (blanco)

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 14 de 41

3. Disco de amoladora de corte

5. Etiquetas

1. Etiqueta autoadhesiva, con código de barra, y datos del producto.

6. Papel envoltorio

1. Rollo de papel film de 1.20 metros de ancho, color transparente.

Esquema de codificación de productos que componen el proceso

Para poder identificar las partes de cualquier sistema de producción es necesario tener un sistema de codificación de todos los elementos intervinientes en el sistema,

DICHA CODIFICACION SE ENCUENTRA EN LAS MEMORIAS DE CALCULO (estructura del producto)

4.3. Explosión de materiales para una unidad de fabricación

Luego de haber realizado la codificación y descripción de todos los elementos necesarios para poder realizar la fabricación del producto, generamos un archivo con el programa Microsoft Excel que nos permite saber la cantidad de producto que se necesita y su costo por cada código según el tipo (modelo) y cantidad de deflectores que se quieran realizar.

Se adjuntará el archivo de Microsoft Excel realizado y se da un ejemplo para cada uno de los modelos de deflector que se fabrican para una unidad de producción.

Ejemplos de la explosión de materiales para una unidad de fabricación del modelo: **Scania modelos M1**

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 15 de 41

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Scania del modelo M1 con todos sus elementos para instalar	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Scania del modelo M1	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,5	metros	0,0175	3,15
IS-02-00	Desengrazante	1,00	litros	0,2	24
MP-03-00	Cera desmoldante	0,25	kilos	0,25	30
MP-03-01	Alchol polivinilico	0,25	litros	0,05	10
MP-04-02	Gel-coat	2	kilos	0,083333333	125
MP-05-03	Resinas	1,5	kilos	0,006521739	82,82608696
MP-05-04	Fibra de vidrio	2	kilos	0,090909091	74,18181818
MP-05-05	Catalizador	0,25	litros	0,25	28,75
MP-05-06	Acelerador	0,25	litros	0,25	63,5
IS-08-01	Masilla plastica poliester	0,5	kilos	0,125	43,75
IS-08-02	Disco de lijar	0,5	Unidad	0,1	. 4
IS-08-03	Lija manual	1	Unidad	0,1	. 6
IS-09-04	Impreción	1	litros	0,25	
IS-09-05	Thinner	2	litros	0,02	. 52
IS-09-06	Pintura	1,5	litros	1,5	570
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8'milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8' milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de $3/16'$ de espesor, $3/4'$ de ancho y de $80\mathrm{cm}$ de long	0,8	metros	0,133333333	85,33333333
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido	0,2	litros	0,2	116
IS-12-16	Disco de desbaste para amolador (para ambos soportes)	0,02	unidades	0,02	4,8
IS-12-17	Disco de corte para sensitiva (para ambos soportes)	0,002	unidades	0,002	
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"	0,35	metros	0,058333333	
				Costo MP de Fabrica	1600,586238

4.4. Estudio de tiempos

Realizando un Value Stream Mapping del proceso actual en la planta con la colaboración de todos los empleados intervinientes, se extrajeron los tiempos actuales de producción para un deflector.

Luego del planteamiento de las mejoras propuestas en los distintos procesos se considera que se va a lograr obtener los siguientes tiempos:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 16 de 41

COMPRAS Y ALMACENES	STOCK M.P.											
PRODUCCION		MOLDEO	DESMOLDE	PRETERMINACION		TERMINACION		EMPAQUE			COLOCACIÓN	
MANTENIMIENTO												
CONTROL DE CALIDAD					INSPECCION 1		INSPECCION 2		INSPECCION 3			
ALMACENES										STOCK P.T.		
LEAD TIME		405	55	60	30	230	30	40	30	10	180	1
VALOR AGREGADO		265	20	30	10	80	10	20	10	10	120	
%VA		65,43%	36,36%	50,00%	33,33%	34,78%	33,33%	50,00%	33,33%	100,00%	66,67%	53,7

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 17 de 41

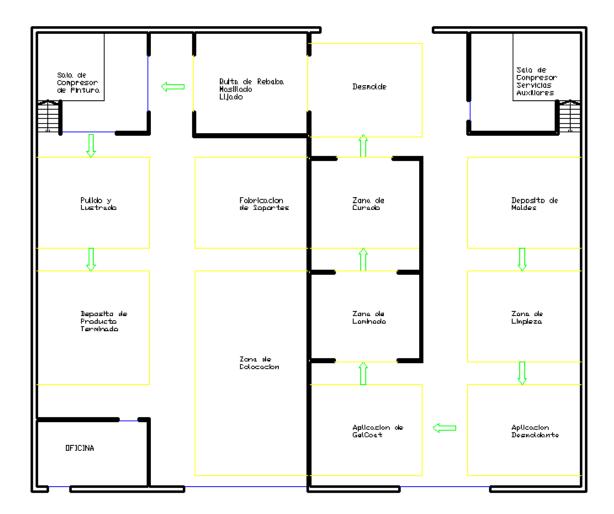
El nuevo plantel será formado por: seis operarios, un pintor, y un encargado de producción el cual también efectúa tareas de control de calidad en los diferentes pasos del proceso productivo.

Diariamente el encargado asigna al operario encargado de matrices los modelos que se comenzarán ese día, mientras que el resto del plantel prosigue con la producción según fue comenzada cronológicamente. A la hora de efectuar la producción los operarios tienen asignadas tareas específicas del proceso según se detalla en el presente capitulo.

La forma de producción sigue siendo contra pedido, el dueño solicita la fabricación de un deflector según pedidos de clientes. Se cuenta con stock de un deflector de cada modelo semi-terminado pintado con fondo.

Para la colocación de los mismos se acurda con el cliente un día, una vez que se tiene el deflector terminado y los anclajes para dicha colocación. Por ello es clave tener una buena coordinación entre la fabricación de los deflectores y de los anclajes Se indica el Lead time y el tiempo de valor agregado en cada paso del proceso productivo.

5. Layout


DISEÑO DE LA NUEVA FORMA DE PRODUCCION

Se organizó la producción según los aportes de los intervinientes en los diferentes procesos, generándose el Layout que se presenta a continuación.

Método de producción en línea, se organizaron las áreas de producción de tal manera que el Layout permita que el producto sea fabricado a lo largo de un proceso continuo y secuencial hasta la obtención de un producto terminado, optimizando la gestión de las materias primas, planificación de servicios y la organización de depósitos.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 18 de 41

5.1. Lay-out en 2d

En el plano PLO1 se encuentra representado el Layout diseñado con sus dimensiones acotadas. (Ver anexo I)

5.2. Lay-out en 3d

Creación de un modelo de la fábrica digital 3D.

La nueva forma de distribución en planta del proceso, es la que se ve dibujada a partir del programa Archicad 3d.

Se anexa todo el programa, con todos los cambios propuestos. (ver anexo II)

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 19 de 41

5.3. Propuesta de una nueva forma de producción

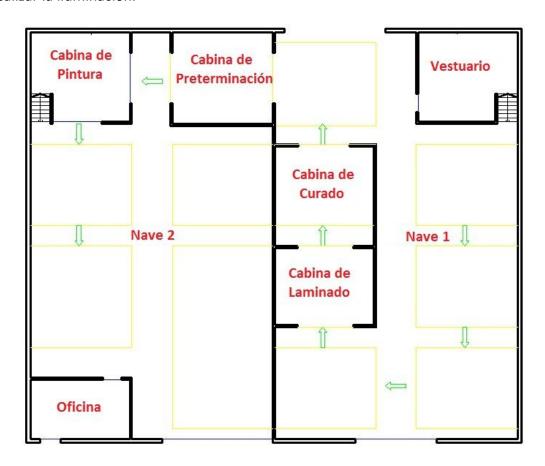
Las **Áreas de Producción** se organizan según la agrupación de tareas que realiza en la línea cada operario, éstos tienen asignadas tareas específicas del proceso de la siguiente manera:

El nuevo plantel será formado por siete operarios, un pintor, y un encargado de producción el cual también efectúa tareas de control de calidad en los diferentes pasos del proceso productivo.

Operario	Áreas	Tareas asignadas
1	Matrices	- Selección de moldes
		- limpieza de moldes
		 aplicación de agente desmoldante
		- aplicación de gel coat
2	Laminado	- laminado
3 y 4	lijado	- desmolde
		- quitado de rebabas
		- masillado
		- lijado
Pintor	Pintura	- pintura
		- control de calidad
5 y 6	Lustrado y	- pulido
	empaque	- lustrado
		- empaque

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 20 de 41

7	Soportería y colocación	realizar soporteríacolocación de productos
Encargado de	producción	 encargado de producción control de calidad
producción		


Diariamente el encargado asigna al operario encargado de matrices los modelos que se comenzarán ese día, mientras que el resto del plantel prosigue con la producción según fue comenzada cronológicamente.

La forma de producción sigue siendo <u>contra pedido</u>, el dueño solicita la fabricación de un deflector según pedidos de clientes. Se cuenta con stock de un deflector de cada modelo semi-terminado pintado con fondo.

Para la colocación de los mismos se acurda con el cliente un día, una vez que se tiene el deflector terminado y los anclajes para dicha colocación. Por ello es clave tener una buena coordinación entre la fabricación de los deflectores y de los anclajes.

6. Iluminación

Según las tareas desarrolladas se efectúa una división de la nave en sectores para realizar la iluminación.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 21 de 41

Se opta por un alumbrado general de forma de obtenerse una iluminación uniforme sobre toda la zona a iluminar, este sistema presenta la ventaja de que la iluminación es independiente de los puestos de trabajo, por lo que estos pueden ser cambiados en la forma que se desee ante la cualquier necesidad. Proporciona las mejores condiciones de visibilidad, dando al ambiente un aspecto sereno y armonioso.

6.1. Sectores a Iluminar

Hay ocho sectores a iluminar:

Sector	Actividad
1	Nave industrial
	N°1
2	Nave industrial
	N°1
3	Cabina de
	Laminado
4	Cabina de curado
5	Vestuarios y
	baños
6	Cabina de
	Preterminación
7	Cabina de pintura
8	Oficina

Anexo IV: cálculo de la iluminación de cada sector realizado con el programa Dialux.

6.2. Iluminación media

En base a Manual de luminotecnia de la AADL y la norma DIN 5053, según la clase de recinto y actividades que se realizan en cada sector recomiendan un nivel mínimo de iluminación media. Si existen diversas actividades y/o tipo de recinto en un mismo sector se adopta el de mayor nivel. Los valores que se obtuvieron se reflejan en la siguiente tabla.

Sector	E _{med} [lux]
1	500
2	500
3	550
4	350
5	200
6	500
7	500
8	500

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 22 de 41

6.3. Índice de reproducción cromática

La norma establece los siguientes valores.

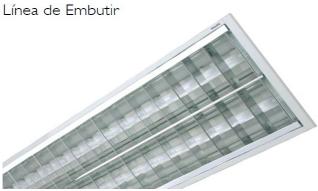
Sector	Ra
1	40 < Ra < 70
2	40 < Ra < 70
3	70 < Ra < 85
4	40 < Ra < 70
5	70 < Ra < 85
6	70 < Ra < 85
7	70 < Ra < 85
8	70 < Ra < 85

6.4. Selección de luminarias y lámparas del proyecto

6.4.1. Selección de luminarias

<u>Sectores 1 y 2</u> Luminarias del tipo campana marca **Philips** modelo **AL500LA**

Sector 3-4-6 y 7


Luminarias de la línea estanco marca Philips modelo PACIFIC TCW216

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 23 de 41

Sector 5 y 8

Luminaria TBS5318

6.4.2. Selección de lámparas.

Sectores 1 y 2

Lámparas del tipo descarga alta intensidad en mercurio halogenado Marca **Philips** modelo **HPI – P400 – BU R** de **400W** Índice de reproducción cromática, Ra=69 y un flujo luminoso de 32.500 lúmenes.

Sector 3 - 4 - 6 - 7 y 8

Tubos fluorescentes trifósforo Philips lámpara Master TL-D 36W/840

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 24 de 41

Sector 5

Tubos fluorescentes trifósforo Philips lámpara es la Master TL-D 18W/840

6.5. Numero de luminarias a utilizar

Mediante el software **Dialux** se obtiene el total de luminarias a utilizar, la siguiente tabla detalla las cantidades en cada sector:

Sector	N° de Luminarias
1	8
2	8
3	4
4	4
5	1
6	4
7	4
8	3

(Ver anexo IV)

7. Instalación eléctrica: Iluminación y Potencia

7.1. Circuitos eléctricos

Para poder realizar el cálculo de los circuitos eléctricos de toda la planta, se dividió en:

- ✓ Circuitos de iluminación
- ✓ Circuitos para tomacorriente y fuerza motriz

Para ver la distribución de los circuitos en la planta ver anexo I (PLE01 – PLE02). Para ver distribución de luminarias ver anexo IV (dialux).

Se creó una planilla de Microsoft Excel, para realizar el cálculo de las secciones de todos los conductores de la planta.

TAG	DESTINO	CAN F+N+PE	F+N+PE	BOCAS 3F+N+PE	CORRIENTE POR CIRCUITO (A)	TENSIÓN DE CIRCUITO (V)	LONGITUD MÁXIMA APROX. EN PLANTA (m)	SECCIÓN AGRUPACIÓN (mm²)	RESISTENCIA ELECTRICA MÁXIMA (Ω/km)	COS FI	CAÍDA DE TENSIÓN DEL CIRCUITO (%)	CAÍDA DE TENSIÓN MÁXIMA ADMISIBLE (%)	RESULTADIO
	TABLEROGENERAL												
TG-C1	ILUMINACIÓN OFICINA	3			2,64	220	8,40	2x1,5+PE	13,3	0,8	0,21	3,00	VERIFICA
TG-C2	ILUMINACIÓN ZONA LAMINADO	4			3,52	220	21,00	2x1,5+PE	13,3	0,8	0,72	3,00	VERIFICA
TG-C3	ILUMINACIÓN ZONA CURADO	2			1,76	220	24,75	2x1,5+PE	13,3	0,8	0,42	3,00	VERIFICA
TG-C4	ILUMINACIÓN ZONA PRETERMINACIÓN	4			3,52	220	32,30	2x1,5+PE	13,3	0,8	1,10	3,00	VERIFICA
TG-C5	ILUMINACIÓN NAVE 1A	4			15,4	220	35,85	2x4+PE	4,95	0,8	1,99	3,00	VERIFICA
TG-C6	ILUMINACIÓN NAVE 1B	4			15,4	220	35,85	2x4+PE	4,95	0,8	1,99	3,00	VERIFICA
TG-C7	ILUMINACIÓN NAVE 2A	4			15,4	220	35,85	2x4+PE	4,95	0,8	1,99	3,00	VERIFICA
TG-C8	ILUMINACIÓN NAVE 2B	4			15,4	220	35,85	2x4+PE	4,95	0,8	1,99	3,00	VERIFICA
TG-T1	TOMACORRIENTES OFICINA		4		10	220	11,00	2x2,5+PE	7,98	0,8	0,64	3,00	VERIFICA
TG-T2	TOMACORRIENTES NAVE 1B			4	16	380	28,00	4x2,5+PE	9,55	0,8	1,56	3,00	VERIFICA
TG-T3	TOMACORRIENTES NAVE 2A			3	16	380	26,00	4x2,5+PE	9,55	0,8	1,45	3,00	VERIFICA
TG-TS1	RAMAL ALIMENTADOR TS1	-	-	-	43,85	380	28,50	4x10+PE	1,45	0,8	0,66	1,00	VERIFICA
TG-TS2	RAMAL ALIMENTADOR TS2	-	-	-	40,97	380	33,35	4x10+PE	1,45	0,8	0,72	1,00	VERIFICA
	TABLERO SECCIONAL 1												
TS1-C1	ILUMINACIÓN CABINA DE PINTURA	4			3,52	220	9,00	2×1,5+PE	13,3	0,8	0,31	2,00	VERIFICA
TS1-T1	TOMACORRIENTES NAVE 1A			2	16	380	12,00	4x2,5+PE	9,55	0,8	0,48	2,00	VERIFICA
TS1-T2	TOMACORRIENTES CABINA DE PINTURA			1	16	380	10,50	4x2,5+PE	9,55	0,8	0,42	2,00	VERIFICA
TS1-FM	COMPRESOR NAVE 1	-	-	-	8,33	380	6,00	4x2,5+PE	9,55	0,8	0,13	2,00	VERIFICA
	TABLERO SECCIONAL 2												
TS 2-C1	ILUMINACIÓN BAÑOS Y CAMBIADORES	1			0,64	220	6,00	2×1,5+PE	13,3	0,8	0,04	2,00	VERIFICA
TS 2-T1	TOMACORRIENTES BAÑOS Y CAMBIADORES		4		16	220	15,00	2×2,5+PE	9,55	0,8	1,04	2,00	VERIFICA
TS 2-T2	TOMACORRIENTES NAVE 2B			3	16	380	17,00	4x2,5+PE	9,55	0,8	0,68	2,00	VERIFICA
TS2-FM	COMPRESOR NAVE 2	-	-	-	8,33	380	12,00	4x2,5+PE	9,55	0,8	0,25	2,00	VERIFICA

(La anterior tabla se puede encontrar en el anexo V, Circuitos eléctricos.)

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 25 de 41

Para la selección de conductores se utilizó cátalogo de la marca Prysmian, según el diámetro obtenido el tipo características que debía tener el mismo.

Todo el detalle de la selección se puede ver en la memoria de cálculos.

(Ver memoria de cálculos 7.1).

Para tener mejor información de la instalación se puede ver el diagrama unifilar del mismo. Ver anexo I, (PLE03 – PLE04 – PLE05).

7.2. Protecciones de circuitos eléctricos.

Para realizar la selección del tipo protección para cada uno de los circuitos eléctricos de toda la planta, se dividió en:

- ✓ Selección de las protecciones de los circuitos de iluminación
- ✓ Selección de las protecciones para tomacorriente y fuerza motriz
- ✓ Selección de las protecciones para tableros

Para ver la distribución de todos los circuitos en la planta ver anexo I (PLE01 – PLE02). El tipo de protección seleccionada para cada uno de los anteriores sectores se encuentra detallado en diagramas unifilares. Ver anexo I, (PLE03 – PLE04 – PLE05).

7.2.1. Protecciones de circuitos de iluminación

Para la protección de los circuitos de iluminación se seleccionaron térmicas unipolares del catalogo de la marca Schneider, de distinta capacidad de corte dependiendo de la corriente del circuito. A continuación se realiza la selección de las mismas, la verificación se encuentra en la memoria de cálculo (Ver Memorias 7.2)

7.2.1.1. Nave 1 y Nave 2

Para estos se colocaran 4 interruptores termomagnéticos, uno por cada circuito, distribuidos entre las distintas fases, los cuales tienen las siguientes características:

Interruptores automáticos C60N curvas B, C y D

	6000 A - IE	C 898 - 10kA	- IEC 947	.2
	1 polo			
1 polo protegido	In	Referen	cias	
Ancho de paso en 9mm: 2	(A)	cur∨a B	curva C	curva D
on Jiiii. Z	0,5		24067	
	1	24045	24395	24625
	2	24046	24396	24626
A	3	24047	24397	24627
	4	24048	24398	24628
	6	24049	24399	24629
40	10	24050	24401	24630
	16	24051	24403	24632

7.2.1.2. Cabina de Laminado – Cabina de Pre terminado – Cabina de pintado Para estos sectores se coloca un interruptor termomagnético por circuito, los cuales tienen las siguientes características:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 26 de 41

Interruptores automáticos C60N curvas B, C y D

7/				
9 7	6000 A - IE	C 898 - 10kA	- IEC 947	7.2
	1 polo			
1 polo protegido	In	Reference	cias	
Ancho de paso en 9mm: 2	(A)	cur∨a B	curva C	curva D
en anni. 2	0,5		24067	
	1	24045	24395	24625
	2	24046	24396	24626
4	3	24047	24397	24627
	4	24048	24398	24628
	6	24049	24399	24629
48	10	24050	24401	24630
	16	24051	24403	24632

7.2.1.3. Cabina de curado

Se colocará un interruptor termomagnético, de las siguientes características:

Interruptores automáticos C60N curvas B C v D

0,5 24067 1 24045 24395 24628 2 24046 24396 24628 3 24047 24397 24628 4 24048 24398 24628 6 24049 24399 24628 10 24050 24401 24630	cuivas D,	CyD			
1 polo protegido Ancho de paso en 9mm: 2	A.	6000 A - IEC	C 898 - 10kA	- IEC 947	7.2
Ancho de paso en 9mm: 2 (A)		1 polo			
en 9mm: 2 (A) CUIVA B CUIVA C		In	Reference	cias	
0,5 24067 1 24045 24395 24628 2 24046 24396 24628 3 24047 24397 24628 4 24048 24398 24628 6 24049 24399 24628 10 24050 24401 24630		(A)	cur∨a B	curva C	curva D
2 24046 24396 24626 3 24047 24397 24627 4 24048 24398 24628 6 24049 24399 24628 10 24050 24401 24630	CITOIIIII. 2	0,5		24067	
3 24047 24397 24627 4 24048 24398 24628 6 24049 24399 24628 10 24050 24401 24630		1	24045	24395	24625
4 24048 24398 24628 6 24049 24399 24628 10 24050 24401 24630		2	24046	24396	24626
6 24049 24399 24629 10 24050 24401 24630	400	3	24047	24397	24627
10 24050 24401 24630		4	24048	24398	24628
		6	24049	24399	24629
16 24051 24403 2463 2	4.0	10	24050	24401	24630
		16	24051	24403	24632

7.2.1.4. Baños y cambiadores

Se colocará un interruptor termomagnéticos, de las siguientes características:

Interruptores automáticos C60N curvas B, C y D

	6000 A - IEC	898 - 10kA	- IEC 947	.2
	1 polo			
1 polo protegido	In	Reference	cias	
Ancho de paso en 9mm: 2	(A)	cur√a B	curva C	curva D
Oli Olilili. 2	0,5		24067	
	1	24045	24395	24625
	2	24046	24396	24626
W	3	24047	24397	24627
	4	24048	24398	24628
	6	24049	24399	24629
48	10	24050	24401	24630
	16	24051	24403	24632

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 27 de 41

7.2.1.5. Oficina

Se colocará un interruptor termomagnético, de las siguientes características:

Interruptores automáticos C60N curvas B, C y D

6000 A - IEC 898 - 10kA - IEC 947.2 1 polo protegido In Referencias Ancho de paso (A)cur∨a B cur∨a C curva D en 9mm: 2 0,5 24067 24045 24395 24625 1 2 24046 24396 24626 3 24047 24397 24627 4 24048 24398 24628 6 24049 24399 24629 10 24050 24401 24630 16 24051 24403 24632

7.2.2. Protecciones de circuitos de tomacorrientes

Para la protección de los circuitos de tomacorriente se seleccionan térmicas del catálogo de la marca Schneider y guardamotores para los compresores, de distinta capacidad de corte dependiendo de la corriente del circuito. (Ver Memorias 7.2).

7.2.2.1. Selección de protecciones en los circuitos de tomacorrientes oficinas, baños y cambiadores.

Se coloca un interruptor termomagnético, de las siguientes características:

Interruptores automáticos C60N curvas B, C y D

7.2.2.2. Selección de protecciones en los circuitos de tomacorrientes nave1 A - B y Nave 2 A - B.

Se coloca un interruptor termomagnético, de las siguientes características:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 28 de 41

4 polos

4 polos protegidos Ancho de paso en 9mm: 8 In Referencias (A) curva B curva C curva D 0,5 24070 24097 24357 24681 24098 24358 24682 3 24099 24359 24683 24100 24360 24684 6 24101 24361 24685 10 24102 24362 24686 16 24688 24103 24363 20 24104 24364 24689

7.2.2.3. Selección de protecciones en los circuitos de los compresores.

Se seleccionaron como ya se vio anteriormente dos compresores con las siguientes características:

Marca: BTA

Modelo: LA274222.6

Características: 5,5hp - 300 Lts. - Trifásico

 $i_{compresor} = 8,33A$

Para proteger éstos se colocarán un interruptor guardamotor para cada uno, de las siguientes características:

GV2ME + LC1K06..

Coordinación tipo 1 - 400V

Motor Potencia	Guardamotor Referencia	Regulación	Contactor Referencia	Iq
kW		Α		kA
0,37	GV2ME05	0,631	LC1K06/LC1D09	50
0,55	GV2ME06	11,6	LC1K06/LC1D09	50
0,75	GV2ME07	1,62,5	LC1K06/LC1D09	50
1,1	GV2ME08	2,54	LC1K06/LC1D09	50
1,5	GV2ME08	2,54	LC1K06/LC1D09	50
2,2	GV2ME10	46,3	LC1K06/LC1D09	50
3	GV2ME14	610	LC1K09/LC1D09	50
4	GV2ME14	610	LC1K09/LC1D09	50
5,5	GV2ME16	914	LC1K12/LC1D12	15
7,5	GV2ME20	1318	LC1K16/LC1D18	15

7.2.3. Protecciones de tableros.

7.2.3.1. Selección de protecciones diferenciales para cada tablero.

Se seleccionan dos interruptores diferenciales para cada tablero. Los cuales son:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 29 de 41

Tablero general TG

- Dos interruptores tetrapolares de 40A,

Tablero seccional TS1

- Un interruptor tetrapolar de 40A,
- Un interruptor tetrapolar de 25A,

Tablero seccional TS1

- Dos interruptores tetrapolares de 40A,
- Dos interruptores tetrapolares de 250A,

Los cuales vemos a continuación:

(Ver Anexo I, Diagramas unifilares PE03 – PE04 – PE05).

Interruptores diferenciales gama ID/IDsi IEC1008

11

Interruptores diferenciales "ID" (Clase AC)
Interruptores diferenciales "ID" (Clase AC)

Nº Polos	Corriente nominal (A)	Sensibilidad (mA)	Referencias		
2	25	10	16200		
2	25 30		16201		
2	25	300	16202		
	40	30	16204		
2	40	300	16206		
2	63	30	16208		
2	63	300	16210		
2 2	80	30	16212		
2	80	300	16214		
4	25	30	16251		
4	25	300	16252		
4	40	30	16254		
4	40	300	16256		
4	63	30	16258		
4	63	300	16260		
4	80	300	16263		

Interruptores diferenciales "ID" (Clase AC)

Nº Polos	Corriente nominal (A)	Sensibilidad (mA)	Referencias
2	25	10	16200
2	25	30	16201
2	25	300	16202
2	40	30	16204
2	40	300	16206
2	63	30	16208
2	63	300	16210
2	80	30	16212
2	80	300	16214
4	25	30	16251
4	25	300	16252
4	40	30	16254

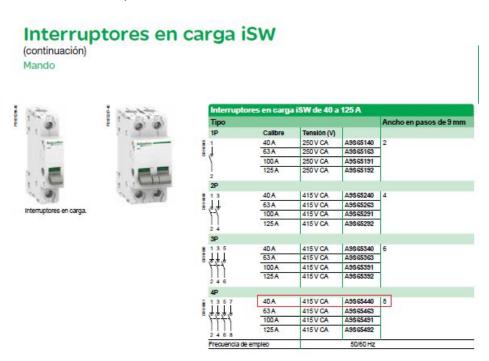
Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 30 de 41

7.2.3.2. Selección de interruptores en carga de cortes para cada uno de los tableros Secundarios

Para el tablero secundario TS1, como la suma de las corrientes aguas abajo es igual a 43,85A, el interruptor seleccionado es de 63A de corriente.

(Ver anexo I, diagrama unifilar)

(Ver anexo V, Tablas de Microsof Excel, circuitos eléctricos)


Interruptores en carga iSW

(continuación) Mando

Tipo				Ancho en pasos de 9 mm
1P	Calibre	Tensión (V)		
1	40 A	250 V CA	A9865140	2
1	63.A	250 V CA	A9865163	1
1	100 A	250 V CA	A9865191	1
2	125A	250 V CA	A9865192	1
2P		- 1	N.	
1 3	40 A	415 V CA	A9865240	4
47	63 A	415 V CA	A9865263	1
	100 A	415 V CA	A9\$65291	1
2 4	125A	415 V CA	A9865292	
3P				
1 3 5	40 A	415 V CA	A9865340	6
111	63 A	415 V CA	A9865363	
1-7-1	100A	415 V CA	A9865391	1
2 4 6	125 A	415 V CA	A9865392	1
4P				
1357	40 A	415 V CA	A9865440	8
1111	63 A	415 V CA	A9865463	
1777	100 A	415 V CA	A9865491	
2468	125 A	415 V CA	A9865492	1.
Frecuencia de	emnien		50/60 Hz	

Para el tablero secundario TS2, como la suma de las corrientes aguas abajo es igual a 34,33A, el interruptor seleccionado es de 40A de corriente.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 31 de 41

7.2.3.3. Selección de interruptor general para TG.

Para la protección del tablero general seleccionamos un interruptor automático NG125N, para lo cual sumamos todas las corrientes aguas abajo y consideramos un factor de simultaneidad de 0,8 el valor de la corriente total es de 113,7A de corriente. Por ello se selecciona un interruptor tetrapolar, curva c, de 125A de corriente máxima.

Interruptores automáticos NG125N

Protección termomagnética de circuitos y receptores

IEC 60947-2 Curvas B, C y D

- · Los NG125N son interruptores automáticos que combinan las siguientes funciones:
- Protección de circuitos contra corrientes de cortocircuito.
- Protección de circuitos contra corrientes de sobrecarga.
- Apto al seccionamiento en el sector industrial según la norma IEC 60947-2.
- Señalización de defecto mediante un indicador mecánico de color rojo situado en la parte frontal del interruptor automático.

Poder de corte (Icu)	según	IEC 60	947-2					Poder de
	Tensi	ón (Ue)						corte de
F/F (2P, 3P, 4P)	-	-	220 a 240 V	-	380 a 415 V	440 V	500 V	servicio (lcs)
F/N (1P)	110 a 130 V	220 a 240 V	-	380 a 415 V	-	_	20	
Calibre (In) 10 a 125 A	50 kA	25 kA	50 kA	6 kA(1)	25 kA	20 kA	10 kA	75% de lou

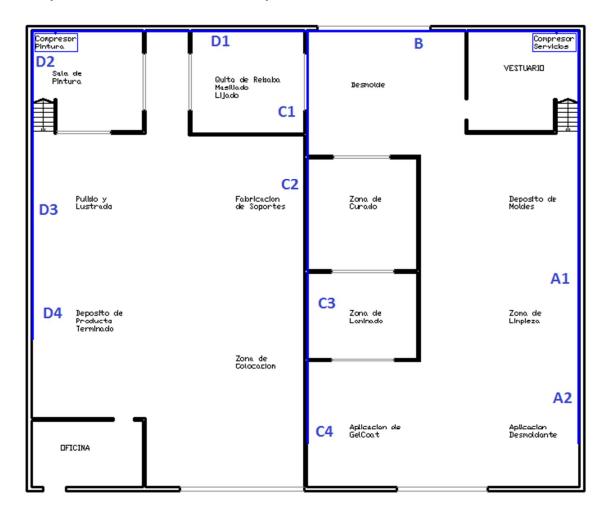
Referencias

Tipo	1P	2P	3P			4P		
HOY "	1	1 3	4 70000			1 3 5	7	
	*	* *	* * *				*	
		1-1	1-4-4			1-1-1	7	
	5	55	44			222	5	
	2					555	25	
	2	2 4	2 4 6			2 4 6		
Auxiliares	Indicación	y disparo remot	os. Dispositivo	de protección di	ferencial Vigi NO	5125		
Calibre (In)	Curva	Curva	Curva			Curva		
	C	C	В	C	D	В	C	D
10 A	18610	18621		18632		-	18649	-
16A	18611	18622	-	18633	-	-	18650	-
20 A	18612	18623	H.	18634	-	-	18651	-
25A	18613	18624	-	18635		-	18652	-
32 A	18614	18625	~	18636	-	-	18653	-
40 A	18615	18626	-	18637		-	18654	-
50 A	18616	18627	-	18638	-	-	18655	-
83 A	18617	18628	-	18639	-	-	18656	-
80 A	18618	18629	18663	18640	18669	18666	18658	18672
100 A	-	-	18664	18642	18670	18667	18660	18673
125 A	-	-	18665	18644	18671	18668	18662	18674
Ancho en módulos de 9 mm	3	6	9			12		

(Ver anexo I, diagrama unifilar)

(Ver anexo V, Tablas de Microsof Excel, circuitos eléctricos)

8. Instalación Neumática


La planta contará con dos estaciones de aire comprimido, la estación 1 abastecerá las herramientas neumáticas y la estación 2 la cabina de pintura.

En los planos PLA01 y PLA02 (ANEXO I) se representará en forma esquemática la disposición de las redes de aire comprimido y los distintos puntos de consumo.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 32 de 41

8.1. Distribución

Croquis de la instalación de aire comprimido

En planos PLA01 y PLA02 (ANEXO I) se representa en forma esquemática la disposición de las redes de aire comprimido y los distintos puntos de consumo.

Tuberías

Las tuberías primarias como las secundarias serán de acero al carbono, con uniones roscadas, aéreas amuradas con ménsulas y las conexiones a las herramientas se harán mediante mangueras neumáticas cumpliendo las reglas especificadas en la bibliografía aplicada (Carnicer Royo). Para las líneas de servicio se utilizarán mangueras flexibles de goma con refuerzo de nylon o poliéster.

El color de las tuberías de aire comprimido es azul moderado.

Bajadas

Las tomas de aire para los consumos se realizarán captando de la red siempre desde el lado superior.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 33 de 41

• Conexión con la línea de servicio mediante acople rápido

• En las herramientas neumáticas, se dispondrá de unidades F-R-L:

Marca: MICRO

Modelo: FRL-4-G04-FRL Drenador Manual 12 BSP

• En las pistolas neumáticas, se dispondrá de unidades F-R:

Marca: MICRO

Modelo: FR-4-G04-FR Drenador Manual 12 BSP

• Colector de condensado en la parte inferior y purga manual.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 34 de 41

8.2. Redes de aire comprimido

Longitud de Tramos

L _{A1} = 16 m	L _B = 11 m	L _{C1} = 7,5 m	L _{D1} = 2,5 m
$L_{A2} = 5 \text{ m}$		L _{C2} = 2,5 m	$L_{D2} = 8 \text{ m}$
		L _{C3} = 2,5 m	L _{D3} = 10 m
		L _{C4} = 5 m	L _{D4} = 5 m

Diámetros seleccionados para los tramos.

D _{A1} = 1/2"	D _B = 1'1/2"	D _{C1} = 1/2"	D _{D1} = 3/4"
D _{A2} = 1/2"		D _{C2} = 3/4"	$D_{D2} = 1/2"$
		D _{C3} = 1/2"	D _{D3} = 1/2"
		D _{C4} = 1/2"	D _{D4} = 1/2"

8.3. Compresores Seleccionados

AMBOS COMPRESORES SERÁN:

Marca: BTA

Modelo: LA274222.6

Características: 5,5hp - 300 Lts. - Trifásico

9. Instalación de Gas

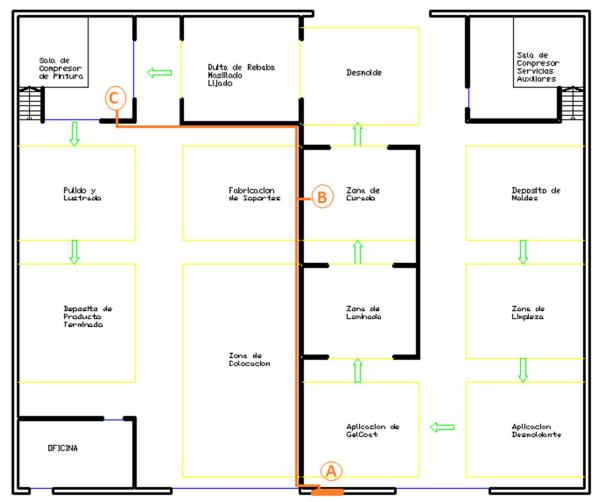
9.1. Consumos

Cabina de curado: 2 tubos radiantes de gas natural marca UBERTA modelo MSU3M de 3m de largo con un consumo $Q = 1,44 \text{ m}^3/\text{h}$ cada uno y presión de alimentación p = 0,2 bar.

Cabina de pintura: requiere un caudal de gas $Q = 1.5 \text{ m}^3/\text{h}$ a p = 0.2 bar.

9.2. Dimensionado de tuberías

Línea interna:


La instalación de la línea interna será aérea, por lo que se opta por el uso de tuberías de acero con tratamiento epoxi anticorrosivo.

LONGITUD DE TUBERIAS:

Tramo AB = 15,75 m + 2 codos + 1 T

Tramo AC = 26,75 m + 4 codos + 2 T + 1 Tat

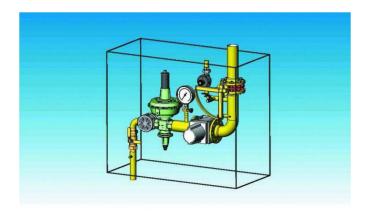
Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 35 de 41

Los planos de la instalación de gas se encuentran en el anexo I - PLG01 Y PLG02.

DIAMETRO DE TRAMOS:

 $D_{AB} = 1 \frac{1}{4}$ "

 $D_{BC} = 1"$


9.3. Planta de regulación y medición

En el punto de entrega, GASNEA entrega gas a alta presión (4 kg/cm2) y en el punto de consumo necesitamos tener baja presión (0.020 kg/cm2).

Regulador de presión seleccionado de la PRM: Marca EQA modelo EQA722.

La planta de regulación y medición está formada por: toma de presión tipo Peterson, válvula de entrada al armario, filtro, regulador con válvula VIS de máxima, válvula VIS de mínima, válvula salida armario, válvula VAS de escape, manómetro precisión CL 0,5 o CL1 válvula de 3 vías para contrastación manómetro patrón, termómetro de capilla y toma presión tipo oliva.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 36 de 41

9.4. Evacuación de los Productos de Combustión

Los gases y los humos originados por la combustión, se canalizan al exterior del local a través de conductos de evacuación de gases.

Los diámetros de los conductos de evacuación de gases, vienen dados por los fabricantes correspondientes de los aparatos.

Conductos metálicos de chapa galvanizada de 300 mm de diámetro.

10. Seguridad e Higiene

De acuerdo a la Legislación vigente (Ley 19587, aprobada por el Decreto 351/79) se llevarán a cabo las siguientes mejoras:

10.1. Ventilación

La ventilación es satisfactoria, no necesitando ningún tipo e inyector de aire. Teniendo en cuenta los Art. 67 y Art. 68, Decreto 351/79, y la producción de polvillo de lijado, en la cabina de pre terminación la prioridad a seguir es:

> Proveer a los trabajadores de barbijo, estos se deberán emplear cuando estén utilizando lijadoras.

También teniendo en cuenta los Art. 69 y Art. 70, Decreto 351/79, sistemas de extracción:

Campanas de extracción en las zonas de lijado.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 37 de 41

10.2. Colores de seguridad

- > Pintar de verde claro el plano de trabajo de las máquinas.
- Pintar de azul los interruptores de las máquinas.
- > Delimitar con lineas amarillas los sectores de trabajo.
- Demarcar los pasillos de circulación con líneas de color blanco, como así también las zonas de almacenamiento.

10.3. Señalización, cartelería e indicadores

Carteles de salida de emergencia, ubicados en la parte superior de ambas salidas. Dimensiones 80 x 30 cm

> Señalización de extintores según clase de fuego. EXISTENTE EN BUEN ESTADO

Colocar carteles de riesgo eléctrico en tableros. 40 x 60 cm

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 38 de 41

Colocar carteles de obligación de usar protector auditivo. 40 x 60 cm

Colocar carteles de obligación de utilizar barbijo en sectores de lijado. 40 x 60 cm

Colocar carteles de prohibido fumar. 40 x 60 cm

10.4. Protección contra incendios

Ya que se dispone de manera improvista y en muy buenas condiciones de seis (6) extintores manuales ABC de diez (10) Kg distribuidos adecuadamente no es necesario un plan de mejoras.

10.5. Salida de emergencia

La puerta principal de acceso y la posterior se utilizarán como salida de emergencia. Sistema de luces de emergencia, que indican dichas salidas, y permiten tener una iluminación en caso de emergencia.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 39 de 41

10.6. Elementos de protección personal

- Antejos de seguridad.
- Calzado: botines de seguridad con punteras de acero.
- Protectores auditivos en forma de tapón.
- Guantes de tejido.
- Lugar adecuado para depositar los elementos luego de usarlos, conservando su limpieza.
- Elementos de protección personal para los encargados de pintura y de laminación. Mameluco con capucha, mascara con filtro de spray.

10.7. Instalaciones sanitarias

Baño:

- > Un (1) inodoro
- > Un (1) lavabo
- Una (1) ducha, con agua fría y caliente.

Botiquín, con los elementos de primeros auxilios.

De color verde y contará como mínimo con los siguientes elementos:

- Gasas
- Algodón
- Apósitos
- > Yodo
- > Tijera
- Jabón
- Aspirinas
- Agua oxigenada
- Cinta

11. Análisis Económico

En el análisis financiero se tuvo en cuenta el monto total de la inversión del proyecto, los costos fijos, costos variables y precio de venta del producto terminado.

Lo que se quiere ver con este análisis es el Umbral de Rentabilidad y la Tasa interna de Retorno de nuestra inversión.

La inversión total suma \$A 854824.00 y es de nuestro interés saber cuánto tiempo llevará recuperar dicha inversión.

Para la base del cálculo se tomó que la fábrica trabaja 43 semanas al año, 5 días a la semana y que produce durante el primer y segundo año 3 deflectores/día, tercer año 4 deflectores/día y a partir del cuarto año producir a máxima capacidad 5 deflectores diarios. Esto está estimado en base a la demanda del mercado y al porcentaje de mercado que vamos a captar.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 40 de 41

Mediante publicidad se pretende aumentar de 2% a 4% la cuota del mercado. Según los resultados de la planilla, se puede ver que la inversión se recupera en poco más de un año y que el negocio tiene una TIR superior al 70%.

L			nversiones - I				
DATOS INICIALES							
Empresa/Proyecto				Fibratex - E-PFC-13	312A		
Inversión inicial	854.824,00						
Costos fijos anuales	150.000,00						
Costo variable unitario	4.700,00						
Precio de venta	6.000,00						
Tasa de inflación anual	20%						
PERIODOS (AÑOS)	0	1	2	3	4	5	6
ENODOS (ANOS)	0		2	Ū	т	J	
PRODUCCIÓN / VENTAS							
Capacidad productiva en unidades		645,00	645,00	860,00	1.075,00	1.075,00	1.07
Demanda del mercado en unidades		32.250.00	32.250.00	36.000.00	36,000,00	36,000,00	36.00
Cuota de mecado prevista		2%	2%	3%	4%	4%	
Cuota de mercado en unidades		645.00	645.00	1.080.00	1,440,00	1,440,00	1.44
Ventas en unidades		645,00	645,00	860,00	1.075,00	1.075,00	1.07
NTRADAS		3.870.000,00	4.644.000,00	7.430.400,00	11.145.600,00	13.374.720,00	16.049.66
Ventas en unidades		645,00	645,00	860,00	1.075,00	1.075,00	1.07
Precio		6.000,00	7.200,00	8.640,00	10.368,00	12.441,60	14.92
SALIDAS	854.824,00	3.181.500,00	3.817.800,00	6.036.480,00	8.989.920,00	10.787.904,00	12.945.48
Inversión	854.824,00	3. 10 1. 500,00	3.017.000,00	6.036.460,00	0.909.920,00	10.767.904,00	12.945.40
Costos Fijos	034.024,00	150.000,00	180.000.00	216.000.00	259,200,00	311.040.00	373.24
Costos Variables Unitarios		4.700.00	5.640.00	6.768.00	8,121,60	9.745.92	11.69
Costos Variables Totales		3.031.500,00	3.637.800,00	5.820.480.00	8.730.720,00	10.476.864,00	12.572.23
			<u> </u>				
FLUJOS DE TESORERIA	-854.824,00	688.500,00	826.200,00	1.393.920,00	2.155.680,00	2.586.816,00	3.104.17
	05100100	100 001 00	050 050 00	0.050.500.00	4 000 470 00	2 722 222 22	0.000.47
	-854.824,00	-166.324,00	659.876,00	2.053.796,00	4.209.476,00	6.796.292,00	9.900.47
JMBRAL DE RENTABILIDAD							
Unidades		115,38	115,38	115,38	115,38	115,38	11
Importe		692,307,69	830,769,23	996.923,08	1.196.307,69	1,435,569,23	1.722.68

(La anterior tabla se puede encontrar en el anexo V, Análisis Económico)

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 41 de 41

G-PFC-1312A-MEMORIA DE CALCULOS

Memoria de Cálculos <u>Índice</u>

1. Int	troducción y Relevamiento actual de Instalaciones y	6
pr	ocesos	
1.1	¿Qué es un deflector de aire para camiones?	6
1.2	¿Qué ventajas brinda la utilización del mismo?	7
1.3	¿Por qué se fabrica de PRFV?	7
1.4	Aspectos Generales de la Planta	7
1.4.1.	Método Actual de Producción	7
1.4.2.	Actuales Instalaciones y su estado	7
1.4.3.	Desarrollo actual del Proceso Productivo	10
1.4.4.	Características de desarrollo laboral	17
1.4.5.	Método de Producción Actual	17
1.4.6.	Características de los Operarios	18
1.4.7.	Administración Actual de la Producción	18
1.4.8.	Atención Comercial	18
2. Le	gislación y normativa aplicada	18
3. Di	agrama de Bloque propuesto para la nueva forma de	19
Pr	oducción	
3.1.	Mejoras en los distintos sectores de la producción	21
3.1.1.	Moldeo	21
3.1.1.1	. Colocación del Gel-coat (Gelcotera)	21
3.1.1.2	. Operación de Laminación	24
3.1.2.	Curado	27
3.1.3.	Desmolde	27
314	Pre-terminación	27

Preparo:	Reviso:		
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 1 de 163	

3.1.5.	Terminación	28
3.1.5.1	. Impresión y Pintura	28
3.1.5.2	. Pulido	29
3.1.6.	Empaque	29
3.1.7.	Stock de producto terminado	29
3.1.8.	Colocación	29
4. Es	tudio de Ingeniería de Métodos	29
4.1.	Codificación de Matrices	30
4.2.	Estructura del Producto	31
4.3.	Explosión de Materiales	49
4.4.	Estudio de Tiempos	63
5. La	yout	67
5.1.	Layout 2d	68
5.2.	Layout 3d	69
5.3.	Propuesta de Nueva forma de producción	69
6. Ilu	minación	70
6.1.	Introducción	70
6.2.	Sectores a iluminar	71
6.3.	Iluminación Media	72
6.4.	Índice de reproducción cromática	73
6.5.	Sistemas de Alumbrado	73
6.6.	Selección de luminarias y lámparas	73
6.6.1.	Selección de luminarias	73
6.6.2.	Selección de lámparas	75
6.7.	Calculo de cantidad de luminarias a utilizar	77
6.7.1.	Calculo de iluminación sector 1 y 2	80

Preparo:	Reviso:		
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 2 de 163	

6.7.2. Calculo de iluminación sector 3	81
6.7.3. Calculo de iluminación sector 4	82
6.7.4. Calculo de iluminación sector 5	83
6.7.5. Calculo de iluminación sector 6	84
6.7.6. Calculo de iluminación sector 7	85
6.7.7. Calculo de iluminación sector 8	86
6.7.8. Numero de luminarias a utilizar	87
7. Instalaciones eléctricas	87
7.1. Calculo y selección de los conductores de iluminación	88
7.1.1. Calculo del circuito de iluminación de la nave 1 y 2	88
7.1.2. Calculo del circuito de iluminación de la cabina de laminado	94
7.1.3. Calculo del circuito de iluminacion de la cabina de curado	98
7.1.4. Calculo del circuito de iluminación de baño y vestuario	101
7.1.5. Calculo del circuito de iluminación de cabina de	103
preterminacion	
7.1.6. Calculo del circuito de iluminación de la cabina de pintura	106
7.1.7. Calculo del circuito de iluminacion de oficina	108
7.2. Calculo y selección de conductores de tomacorrientes	110
7.2.1. Calculo de sección de cond. de tomacorrientes oficina	110
7.2.2. Calculo de sección de cond. de tomacorrientes nave 1B	113
7.2.3. Calculo de sección de cond. de tomacorrientes nave 2A	115
7.2.4. Calculo de sección de cond. de tomacorrientes nave 1A	115
7.2.5. Calculo de sección de cond. de tomacorr. cabina de pintura	116
7.2.6. Calculo de sección de cond. de tomacorr. Compresor 1	117
7.2.7. Calculo de sección de cond. de tomacorr. sanitarios	118
7.2.8. Calculo de sección de cond. de tomacorrientes nave 2B	121

Preparo:	Reviso:		
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 3 de 163	

7.2.9.	Calculo de sección de cond. de tomacorr. Compresor 2	122
7.3.	Caculo y selección de conductores de ramal alimentador	123
7.3.1.	Calculo de sección cond. Ramal alimentador TG-TS1	123
7.3.2.	Calculo de sección cond. Ramal alimentador TG-TS2	125
7.4.	Protecciones de Circuitos Eléctricos	128
7.4.1.	Protecciones de Circuitos de Iluminación	129
7.4.1.1	. Nave 1 y Nave 2	129
7.4.1.2	. Cabina laminado – cabina preterminado – cabina pintado	130
7.4.1.3	. Cabina de curado	131
7.4.1.4	. Baños y cambiadores	132
7.4.2.	Protecciones de Circuitos de Tomacorrientes	134
7.4.2.1	. Oficina – baño – cambiador	134
7.4.2.2	. Nave 1 A-B y Nave 2 A-B	135
7.4.2.3	. Compresor	136
7.4.3.	Protecciones de Tableros	137
7.4.3.1	. Protecciones diferenciales para cada tablero	137
7.4.3.2	. Selección de interruptores de corte para TS	139
7.4.3.3	. Selección de interruptor General	141
8. In:	stalación Neumática	141
8.1.	Listado por zona de trabajo	142
8.2.	Estacione Compresoras	143
8.3.	Croquis de la instalación	144
8.3.1.	Distribución	144
8.3.2.	Disposición de las instalaciones	145
8.3.3.	Tuberías	145
8.3.4.	Bajadas	145
8.4.	Calculo de las redes de aire comprimido	147

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 4 de 163

8.4.1.	Determinación del diámetro de la cañería	148
8.5.	Selección de los compresores	151
9. In:	stalación de Gas	153
9.1.	Artefactos seleccionados	153
9.2.	Consideraciones de diseño	154
9.3.	Calculo de dimensiones de tuberías	155
9.3.1.	Bases de calculo	155
9.3.2.	Diámetro de tuberías	156
9.4.	Planta de regulación y medición	157
9.5.	Evacuacion de productos de combustión	158
10 .	Estudio de Seguridad e Higiene Industrial	158
10.1.	Ventilación	158
10.2.	Colores de seguridad	159
10.3.	Señalización, cartelería e indicadores	159
10.4.	Levantamiento de cargas	160
10.5.	Orden y limpieza	161
	Orden y limpieza Ruidos	161 161
10.6.		
10.6. 10.7.	Ruidos	161
10.6.10.7.10.8.	Ruidos Protección contra incendio	161 161
10.6.10.7.10.8.	Ruidos Protección contra incendio Salida de Emergencia Elementos de protección personal	161 161 162

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 5 de 163

1. Introducción y relevamiento actual de instalaciones y procesos

1.1. ¿Qué es un deflector de aire para camiones?

Este es un elemento que se utiliza para mejorar la aerodinámica de los camiones respecto al acoplado que llevan, cualquiera sea el tipo y la carga. Se coloca sobre la cabina de los camiones y permiten que no se produzca el choque de aire directamente sobre el acoplado de los mismos.

1.2. ¿Qué ventajas brinda la utilización del mismo?

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 6 de 163

La ventaja que genera la utilización de estos deflectores es un ahorro considerable de combustible, se ha comprobado una disminución de un 10% de ahorro o más.

Es por ello que el producto que se fabrica tiene una gran demanda debido al gran ahorro económico que les genera a los clientes.

1.3. ¿Por qué se fabricar de PRFV?

Estos se fabrican de PRFV, debido a las grandes ventajas que nos brinda este material, las cuales son:

- Alta resistencia mecánica
- Bajo peso, facilitando el transporte e instalación
- Alta resistencia a la corrosión y la intemperie
- Bajo costo
- Bajo mantenimiento

1.4. Aspectos generales de la planta

1.4.1. Método actual de Producción

Luego de realizar una recorrida por todas las instalaciones de la planta y ver la forma en que producen llegamos a las siguientes conclusiones.

- La organización actual de la producción no es buena. Se trabaja en un ámbito de mucho desorden donde cada área no se encuentra delimitada.
- > Se mesclan los lugares de trabajo, sin tener una cronología ni un orden de trabajo que le permita al operario tener un mejor desempeño. Esto provoca pérdidas de tiempo en la producción.
- ➤ No hay una forma de producción bien controlada respecto a los pedidos solicitados. Se generan deflectores que luego quedan estoqueados.
- No se efectúa un buen control de stock de materia prima, lo que a la larga trae aparejados inconvenientes a la hora de producir.
- No se realiza un buen control de calidad de los productos ya terminados
- Se tiene muy poca prevención sobre la higiene y seguridad de la planta cada uno de los operarios.

1.4.2. Actuales Instalaciones y su estado

En nuestra recorrida realizamos un relevamiento de todas las instalaciones actuales con las que cuenta la planta y el estado de las mismas;

Instalaciones eléctricas

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 7 de 163

La planta se encuentra conectada a la red de electricidad local de la empresa ENERSA, con una baja trifásica.

A la hora de realizar un relevamiento del estado y de la manera en que se encuentra la instalación eléctrica, concluimos que su estado es muy precario con desprolijidades, y a la vez genera un peligro para los operarios.

- 1. No cuenta en cada zona de trabajo con tableros con su respectivo toma corriente para facilitar el trabajo.
- 2. La instalación no cuenta con un tablero con todas las reglamentaciones pedida por la AEA (ASOCIACION ELECTROTECNIA ARGENTINA).
- 3. El pasaje de los cables de la instalación se encuentra puesto de manera desprolija y colocada por lugares de pasaje de personal que pueden provoca accidentes.
- 4. No se tiene documentación alguna de planos sobre la instalación eléctrica.

Instalación neumática

A la hora de observar la parte neumática de la instalación encontramos muchos inconvenientes:

- Se tienen tres compresores seleccionados al azar que son los que proveen el aire comprimido en la planta. Uno de ellos lo utilizan para la zona de pintura y el otro para accesorios de trabajos como pulidores o lijadoras. El tercero esta de repuesto.
- 2. No se cuenta con una red de aire dispuesto sobre la nave, se maneja con mangueras por el piso para realizar los trabajos lo que genera un gran incomodidad una pérdida de tiempo.
- 3. No cuenta la planta con filtros que permitan purificar el aire, en especial para realizar trabajos de pintura.
- 4. No hay documentación alguna de los consumos de aire, ni la distribución del mismo.

Instalación de Gas Natural

En nuestra recorrida observamos que dicha industria no cuenta con una instalación de gas natural que le permita calefaccionar algunas de las zonas de producción. En este momento para la calefacción de las zonas se realiza con gas envasado y estufas de poco rendimiento. Siendo que la línea de gas natural pasa por frente de las instalaciones de la industria.

<u>Iluminación</u>

La iluminación actual de la nave es deficiente, es por medio de tres luces generales, con lámparas de sodio de bajo consumo que se encuentran distribuidos en la parte superior de la nave de manera aleatoria.

Según nuestro relevamiento esta iluminación es defectuosa, en ciertos lugares se debe contar con una mayor cantidad de lúmenes que mejore la visión del operario.

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 8 de 163

A estas tres luces generales solo hay que sumarle un fluorescente en zona de pintura, pero creemos que es deficiente la cantidad de lúmenes necesarios para esta zona de producción.

Cabina de pintado

Esta cuenta con una cabina de pintado fabricada de manera artesanal y un poco precaria, la cual no brinda las comodidades optimas para realizar una buena terminación del producto. Además cuenta con un pequeño extractor de aire para la ventilación de la misma que seguramente no es suficiente, esto pone en riesgo la salud del operario.

Sistema de ventilación

La industria no cuenta con sistemas de ventilación en la actualidad, lo cual genera un ambiente complicado de trabajo debido a:

- polvillo que se genera al lijar y pulido de los deflectores
- > a la hora de pintar se genera polvillos de la pintura
- ➤ al igual que cuando se realiza la laminación es necesario realizar una buena ventilación por los olores que genera.

Organización interna-utilización de Matrices

No cuenta con un sistema de almacenamiento adecuado de las distintas matrices con que cuenta la industria, esto genera grandes inconvenientes de espacio, (ocupan mucho lugar). Además una vez seleccionada una es un trabajo engorroso saber distinguirla y encontrarla, dado que no hay una codificación de los productos, ni un respaldo digital que permita rápidamente saber donde se encuentra cada uno de las matrices.

Sistema de Stock de Productos terminados

Al igual que para el caso anterior tampoco se tiene un sistema de almacenamiento los deflectores una vez terminados van quedando en el piso, y esto produce grandes problemas de espacio, así como también se pueden producir rayas por el movimiento de los mismos lo que genera una mala entrega del producto, o de tener que realizar un retoque de pintura del mismo.

Nosotros consideramos que para este tipo de industria la mejor forma de realizar los trabajos es a contra pedido, y así tener un mínimo stock. Más adelante realizaremos una explicación más profunda del nuevo método de trabajo.

<u>Sistema de Stock de Productos Materia prima</u>

Las materias primas no tienen un lugar bien definido lo que genera inconvenientes para la organización de cada uno de los sectores de producción, tampoco se lleva un registro de qué cantidad hay, ni un control de cuanto se va utilizando para producir.

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 9 de 163

Con lo cual se puede generar un exceso de materiales disponible, como faltantes de algunos.

Estado general de las instalaciones

Con lo todo lo dicho anteriormente se puede concluir que la metodología actual de producción, cuenta con una necesidad imperiosa de realizar mejoras en sus instalaciones, permitiendo de esta manera obtener reducciones en costos y mejora de la calidad.

Si estas mejoras son acompañadas de un cambio en la política de higiene y seguridad, brindará una mejor condición de trabajo a los empleados.

1.4.3. Desarrollo actual del proceso productivo

A la hora de realizar una descripción del método de trabajo actual para llevar a cabo el proceso de fabricación de deflectores con PRFV, debemos aclarar que existen diferentes métodos de realizar la laminación, en la actualidad se la realiza de manera tradicional y los pasos que se efectúan son:

- 1. Selección del molde a realizar
- 2. Limpieza del molde para comenzar a trabajar sobre el mismo,
- 3. Colocación de cera desmoldante, (agente de desmolde),
- 4. Colocación del gel-coat,
- 5. Etapa de laminación,
 - ✓ Manual
- 6. Proceso de polimerización o "curado",
- 7. Etapa de desmolde,
- 8. Terminación del producto.
 - 8.1. Quitado de rebarba
 - 8.2. Masillado
 - 8.3. Pintado
 - 8.4. Pulido

1. Selección del Molde del deflector a realizar

El operario selecciona el molde del deflector de aire que necesita realizar, estos moldes son construidos de PRFV. Se efectúa una inspección de la misma para verificar que se encuentra en buen estado, es decir no tiene grietas, rayones, imperfecciones, etc, que nos podrían ocasionar alguna falla sobre el deflector a fabricar.

2. Limpieza del molde para comenzar a trabajar sobre el mismo

Se realiza un limpiado de la misma de la siguiente manera:

- 1) En primer se verifica que no haya quedado rastros de fibra del anterior deflector fabricado.
- 2) Luego se pasa un paño con un producto desengrasante para eliminar cualquier suciedad que no permita la colocación de la cera desmoldante.

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 10 de 163

3) Por último se efectúa un sopleteado con aire comprimido para eliminar cualquier tipo polvo que quedase en algún rincón del molde.

Dejando el molde de esta manera sin ningún tipo de suciedad, lista para continuar con el proceso.

3. Colocación de cera desmoldante, (agente de desmolde)

Una vez seleccionado el molde se coloca la cera en primer lugar y luego las películas de PVA (alcohol polivinílico), que se utilizan como desmoldantes para facilitar el retiro de las partes fabricadas de las matrices de plástico.

Es importante verificar las características de desmoldado de cualquier desmoldante antes de utilizarlo en la producción. Podemos decir que:

Ceras desmoldantes

Las ceras de parafina de base fuerte y las ceras de carnauba se utilizan con éxito como desmoldantes en la fabricación de partes con las resinas. Muchas marcas proporcionan excelentes resultados. En general, los distribuidores locales de fibra de vidrio pueden brindar estos productos.

Las ceras a base de acrílicos no se han aceptado para utilizarlas como desmoldantes porque tienden a inhibir el curado.

El uso de algunos desmoldantes a base de silicona ha demostrado que inhibe el curado del laminado de la resina.

Los resultados óptimos se obtienen aplicando la cera al molde o matriz con un paño limpio, y luego puliendo la superficie de forma vigorosa para obtener una película fuerte, brillante y ultra fina. Se debería aplicar varias capas de cera antes de utilizar el molde, y luego una sola capa de cera después de cada desmoldado.

El exceso de cera que queda en la superficie del molde puede inhibir el curado de la resina, dando como resultado una barrera química oscuro. Aunque la superficie que está debajo de la cera puede estar completamente curada. Si esto sucede, retire lijando de 0.05 a 0.08 milímetros de la capa de cera aproximadamente, y luego verifique nuevamente la superficie.

Si se desea obtener una superficie altamente brillosa, recubra la superficie de cera pulida del molde con una película de PVA.

Películas de PVA (Alcohol Polivinílico)

Cuando se aplican adecuadamente las películas de alcohol polivinílico, se puede obtener un desmoldado excelente de las partes fabricadas con resinas. Las películas de PVA se pueden asperjar o pintar sobre moldes de metal pulidos o encerados. Después de la aplicación, se debe secar bien la película ya que cualquier residuo de humedad podría inhibir el curado de las resinas que se curan con sistemas de catalizadores MEKP o CHP. Debido a que las películas de PVA son hidrófilas, podría ser necesario (en atmósferas de gran humedad) secarlas a la fuerza con lámparas de calor.

4. Colocación de gelcoat (Referencia)

4.1. Generalidades

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 11 de 163

Son resinas no reforzadas que constituyen la superficie de los laminados de poliéster con fibra de vidrio.

El gelcoat tiene tres funciones principales:

- a) Proteger el laminado contra los efectos de la intemperie y humedad.
- b) Conferir acabado colorido, liso y brillante a la superficie del deflector de aire.
- c) Servir de base para aplicar pinturas especiales (acrílicas, poliuretano, etc.)

Generalmente el gelcoat es aplicado sobre la superficie del molde, siendo el laminado estructural aplicado sobre esta capa. El gelcoat reproduce las características superficiales del molde (obviamente cubierto por un desmoldante). Moldes lisos y brillantes permiten piezas también lisas y brillantes.

Los gelcoat de acabados deben ser aplicados sobre moldes bien pulidos, con esmerado acabado superficial.

4.2. Métodos de aplicación

Los gelcoat pueden ser aplicados por pistola, rodillos o pincel. Mejores resultados son obtenidos con aplicación con pistola, que permiten aplicaciones uniformes de espesor. En ambientes cerrados o de difícil acceso los rodillos de pintor pueden ser usados como mejor alternativa de aplicación. Actualmente el modo de aplicación se realiza con rodillo o pincel.

Generalmente la primera aplicación debe tener 0,10-0,15mm y la segunda con 0,30-0,35 mm. El espesor final no debe sobre pasar los 0,5 mm. Resultados más gruesos resultan ser muy quebradizos y pueden aparecer grietas superficiales. Aplicaciones muy delgadas pueden arrugarse debido al ataque del estírenos de los laminados.

El laminado sobre el gelcoat no debe ser iniciado antes del estado de "toque", caracterizado por la cura parcial del gelcoat, cuando la superficie puede ser tocada por el laminador sin pegarse los dedos.

4.3. Materia primas para Gel Coat

Son usados resinas Rígidas y Flexibles (Ortoftálica e Isoftálica). Las resinas Bisfenólicas y Viniléster son empleados cuando son sometidas a contacto de ambientes agresivos.

Las resinas Ortoftálica son para uso general, presentan buena resistencia a la intemperie y ambientes moderadamente agresivos. Debido a su bajo costo son usados son formulados para fabricar gelcoat de uso general. Los gel coat Ortoftálica modificados con Neopentaglicol (NPG) son la mejor opción en términos de costo vs. desempeño para los usuarios de fabricaciones de fibra de vidrio

Algunas resinas Isoftálicas, de cadenas moleculares más largas que las Ortoftálica

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 12 de 163

tienen mejor desempeño al estar expuestas a la intemperie, altas temperaturas y contacto permanente con el agua.

Las resinas Ortoftálica (rígidas) tienen menor brillo superficial y menor resistencia a la intemperie que las flexibles. Otro problema de las rígidas, cuando son usadas son más susceptibles al desgaste superficial que facilitan la penetración de humedad por erosión, perjudicando la durabilidad de la capa protectora.

Las resinas usadas para gelcoat de molde no precisan ser muy flexibles, porque los moldes, siendo rigidez no presentan tantos problemas de desgaste por uso. La flexibilidad requerida para el gelcoat de moldes puede ser elaborado por los fabricantes modificando la relación entre ácido isoftálico y ácido maléico.

5. Etapa de laminación manual

Existen cerca de una veintena de procedimientos para la aplicación de fibra de vidrio, pero los que se pueden utilizar para la fabricación de deflectores de aire para camiones son dos, de los cuales hacemos a continuación una breve reseña:

Moldeo por contacto

Para el moldeo por contacto se necesita únicamente de un molde, el cual puede ser de dos tipos:

- Macho: Referido a la superficie de acabado interior.
- Hembra: Que se refiere a la superficie de acabado exterior.

Los moldes pueden ser de diversos materiales, entre los que se encuentra el yeso, la arena, la madera, el cemento, la arcilla, entre otros bastos de construcción. El acabado de los moldes debe tener una rugosidad mínima que oscila entre 0.010 y 0.005 micras, es decir, acabado espejo. Lo cual se logra al pulir el molde, de esta forma se asegura que la superficie del modelo quedará lisa. El moldeo por contacto se divide en dos partes: *Moldeo por contacto a mano* y *moldeo por rociado*.

5.1. Moldeo por contacto a mano

Antes de comenzar con esta operación se puede revisar tocando levemente con el dedo el reverso del gelcoat, si el pulgar sale limpio se puede continuar con la aplicación de la resina poliéster. Después de verificar la capa de gelcoat se unta la resina con una brocha encima de la capa de gelcoat de manera uniforme, así mismo, se aplica la primera capa de fibra de vidrio con una brocha o rodillo.

La resina fluirá entre las entretejidas con facilidad y disolverá el aglutinante que mantiene unidas los nervios, es ahí cuando el tejido pierde identidad y se convierte en una distribución aleatoria de fibras que toman la forma del molde, un exceso de resina podría provocar la creación de burbujas de aire inmediatamente detrás del gelcoat.

El proceso de laminado o de colocación de capas de resina y de fibra de vidrio continúa hasta que se alcanza el espesor deseado, cada etapa tiene que trabajarse hasta que la fibra quede impregnada por completo. Esto con la finalidad de evitar la formación de grietas, el desprendimiento del objeto del molde, y la pérdida del pigmento de la resina. Algunas veces la pieza se puede reforzar colocando insertos metálicos, los cuales se colocan durante el laminado, el inserto debe quedar en la mayor área de

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 13 de 163

contactos posible con el laminado. Si se taladran agujeros pequeños en los insertos se mejorará aún más la adherencia, pues la fibra quedará verdaderamente unida al inserto; estos insertos se usan generalmente cuando la pieza terminada tiene que fijarse a un soporte o una bisagra.

Moldeo por contacto a mano

5.2. Moldeo por contacto a rociado

Es también conocido con el nombre de moldeo por inyección de resina a baja presión, este proceso consiste básicamente en la aplicación simultánea de resina poliéster, catalizador y fibra de vidrio. Su función principal es cortar la fibra de vidrio en trozos de una longitud de 3.24 cm y añade la resina junto con el catalizador en la pistola y se proyecta sobre el molde la mezcla.

Se suministra al dispositivo de dispersión, la resina, el catalizador y la fibra de vidrio. La resina y catalizador son por medio de una bomba hidráulica y la fibra de vidrio, también conocida como woven roving (es una especie de cordones retorcidos y plegados en un telar) es suministrada por dos rodillos, que trabajan neumáticamente. Un rodillo es de caucho y el otro posee unas cuchillas de corte, para así, ser expulsada con una longitud homogénea para incorporarse a la mezcla en el exterior del dispositivo. En este método aún es necesario continuar usando los rodillos y la brocha, pues la mezcla de fibra de vidrio con resina, se debe seguir consolidando de esta manera. Con el moldeo por rociado se obtiene una ventaja, la cual tiene como función reducir el tiempo de proceso, pero los gastos de la mano de obra se ven afectados, pues requieren de un operario muy hábil para regular el espesor del laminado. En conclusión si se tiene un alto volumen de producción, se justifica la compra para un equipo de moldeo por rociado.

Con lo leído anteriormente se puede percibir que tanto el molde por rociado y el moldeo por contacto comparten las mismas aplicaciones y los materiales que utilizan son los mismos, sin embargo el moldeo por rociado es mucho más eficiente, ya que evita en gran parte el desperdicio de material. Las aplicaciones que se utilizan que se utilizan para el moldeo por rociado como para el moldeo por contacto a mano son las mismas, aquí se muestran algunas de ellas: lanchas, carrocerías para automóviles y camiones, piscinas, bañeras, elementos de baños, tuberías, carcasas, juguetes, artículos deportivos, pantallas, etc.

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 14 de 163

Moldeo por contacto a inyección.

Actualmente el método utilizado por la industria para la producción de los deflectores de aire para camiones es primero de los dos descriptos, es decir el de Moldeo por contacto a mano. Para nuestra nueva forma de producción realizaremos unos cambios sobre esto que más adelante detallaremos en el proyecto.

6. Proceso de polimerización o "curado",

El **proceso de polimerización o "curado"** es en el que las moléculas de estireno, a través de sus dobles enlaces, se unen a las instauraciones del polímero formando un compuesto reticulado tridimensional, transformando la resina de líquido en sólido- se genera una fuerte reacción exotérmica, que puede alcanzar temperaturas de hasta 160 °C - 200 °C. Sin embargo en los laminados de superficie la temperatura es mucho más baja debido a la mayor disipación del calor.

Esta operación puede realizarse a temperatura ambiente, aunque puede acelerarse a 40°C con aire caliente o lámparas de calefacción. Es necesario hacer un control de la temperatura pues siesta excede 60°C podrían evaporarse los disolventes, diluyentes u otros aditivos formándose burbujas y defectos en el laminado.

Actualmente el proceso de curado se realiza a temperatura ambiente, el cual lleva un tiempo aproximado de 12 horas, hasta que el mismo se encuentra en condiciones de poder ser desmoldado.

7. Desmolde

Para la etapa de desmolde, la cual consiste en separar la pieza del moldeo, siempre y cuando se haya aplicado correctamente el agente de desmolde.

Hay distintos métodos de realizar el desmolde dependiendo de lo complicado de la forma de las piezas alguna de ellas son:

- Se introduce una boquilla de una pistola de aire entre los bordes de la pieza y la superficie del molde.
- Cuando se trata de cascos para botes se separan dejando correr agua muy lentamente entre el objeto y el molde, siempre y cuando se haya usado un agente de desmolde soluble en agua.
- Para el caso de moldes de gran espesor se ayuda al desprendimiento dando unos cuantos golpes con un mazo recubierto de goma.

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 15 de 163

Este ultimo de las formas descriptas es la utilizada para el desmolde de los deflectores de aire.

8. Terminación del producto

8.1. Quitado de rebaba

Una vez terminado la etapa de desmolde las piezas quedan con un sobrante de material de fibra de vidrio sobre los bordes del deflector de aire, por ello el operario con una espátula retira todo este material sobrante, y luego con una lija realiza un bisel de todos los bordes para dejar con una excelente terminación de la pieza.

Para efectuar el lijado el operario utiliza la maquina lijadora para acelerar el proceso.

8.2. Masillado

Luego de desmolde las piezas quedan con un muy buena terminación gracias a la aplicación del gel coat, pero igualmente sobre la superficie del deflector quedan pequeñas imperfecciones (poros, pequeñas rayas, etc). Para poder eliminar todas estas imperfecciones se realiza el masillado de la misma con masilla plástica......

La cual luego se lija en primer lugar con una lija de un mayor grano, y luego con bien fina hasta alcanzar la terminación perfecta para luego ser pintado.

8.3. Pintado

La pieza es llevada hasta la sala de pintura, luego el operario realiza una limpieza de la misma para quitarle todo el polvillo que pueda tener la misma después de la lijada de la masilla.

Una vez que el deflector esta lista se pone la sala de pintura en las mejores condiciones para efectuar el pintado (temperatura, humedad, etc).

La misma se efectúa se por el método de pintado con pistola de aire donde el color de la pintura y el tipo de pintura dependerá del pedido que realiza el cliente.

8.4. Pulido

Una vez finalizado el proceso de pintado, se deja hasta que la pintura haya sufrido el proceso de secado necesario, recomendado por el fabricante de la pintura, y luego se procede al proceso de pulido.

Para el mismo se requiere de los siguientes elementos, pasta de pulir, maquina pulidora, disco pulidor, paño fino para dar terminación.

Los pasos para efectuar el pulido son:

- 1. Primero se coloca la pasta de pulir sobre una parte del deflector
- 2. Se pone el disco pulidor en la maquina, y se pasa sobre la superficie del deflector
- 3. Se repite este proceso hasta alcanzar el pulido necesario
- 4. Para finalizar se pasa el paño sobre toda la superficie del mismo para darle la terminación

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 16 de 163

1.4.4. Características de desarrollo laboral, características de operarios

La empresa actualmente se encuentra formada por cinco operarios, más un encargado y dueño de la misma.

A la hora de efectuar la producción los operarios no tienen asignada una tarea específica del proceso, sino que van realizando alguna tarea según se lo vallan requiriendo. El dueño es el encargado de ir asignando tareas.

La forma de producción actual es contra pedido, el dueño solicita la fabricación de un deflector según el pedido de algún cliente. Además se cuenta con un pequeño stock de de deflectores terminados de los más solicitados.

Para la colocación de los mismos se acurda con el cliente un día, una vez que se tiene el deflector terminado y los anclajes para dicha colocación. Por ello es clave tener una buena coordinación entre la fabricación de los deflectores y de los anclajes.

1.4.5. Metodo de producción actual

En este momento la empresa se encuentra fabricando un deflector por día, donde la forma de producirlo durante el día es:

Por la mañana

- 1. Se selecciona el molde que se va a realizar,
- 2. Se realiza la limpieza del molde para comenzar a trabajar sobre el mismo,
- 3. Se coloca la cera desmoldante, se deja secar (tiempo minimo 30 minutos
- 4. Se realiza la colocación del gel-coat

Por la tarde

Por la tarde el gel-coat tuvo el tiempo de secado necesario, unas cuatro hora al menos. Se realiza la laminación manual de la misma y se la deja lista para desmoldar al día siguiente.

Por la noche:

Durante la noche se produjo el proceso de curado lo que permite un fácil desmolde.

Al día siguiente se efectúa el desmolde del deflector, el proceso de quitado de rebaba, masillado, pintado y pulido del mismo.

Todo lo dicho anteriormente se da si las condiciones del tiempo son buenas, es decir el factor de temperatura y humedad son muy importantes en este proceso. Es por ello que cuando las condiciones climáticas son adversas debido a lluvias o días de mucha humedad todos los tiempos de secado de los materiales, (agente desmolante, gel-coat, resinas) y del proceso curado se alargan, este es uno de los graves inconvenientes que nosotros observamos que tiene el proceso actual.

1.4.6. Características de los operarios

Los cinco operarios con que cuenta la planta efectúan distintas tareas del proceso según el requerimiento del mismo.

Pero uno de ellos es el encargado de realizar la parte de pintura exclusivamente, y otro el encargado de realizar los herrajes de soporte de los deflectores. La mayoría de ellos son técnicos y su tarea se ajusta la necesidad de producción.

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 17 de 163

1.4.7. Administración actual de la producción

En la actualidad la administración de la producción está a cargo del dueño de la empresa. Esta se maneja con una producción de deflectores a partir de los pedidos solicitados para un tipo de camión determinado. Y se tiene como vimos anteriormente un mínimo stock de productos terminados.

Cuando no hay un pedido urgente de producción se va abasteciendo el stock de estos productos terminados, en algunos casos algunos de ellos se dejan sin pintar, porque en muchos casos varia el color, dependiendo del camión donde se va a colocar.

1.4.8. Atención comercial

La misma se realiza en la oficina que tiene la empresa instalada en el mismo establecimiento donde se realiza la fabricación. La misma la realiza el dueño de la empresa.

Su mayor publicidad está dada por la ubicación actual de la empresa, y la publicidad de boca en boca. Todo esto le ha permitido un gran crecimiento exponencial en la venta.

2. Legislación y normativa aplicada

Leyes aplicadas

Ley de seguridad e higiene № 19.587, reglamentación Decreto № 351/79 Ley N°6260 (Prov. Entre Rios) Prevención y Control de la Contaminación por parte de las Industrias y decreto reglamentario N°5837 M.B.S.C. y E. Ley 24.557, con las modificaciones introducidas por la Ley 24.938 y el Decreto

1278/00

Normas consultadas

Iluminación DIN 5035

Normas Eléctricas AEA (asociación electrotécnica argentina)

Normas IRAM 4524 de dibujo técnico

GAS – NAG 201 - Disposiciones, normas y recomendaciones para uso de gas natural en instalaciones industriales. (GN-GL)

Otra bibliografía

Manual OSRAM de luminotecnia

Organización Internacional del Trabajo, "Introducción al Estudio del Trabajo", Cuarta edición, Editorial: Noriega-Limusa, México D.F., 1998

MAY NARD, H.B. Manual De Ingeniería Y Organización Industrial. Editorial Reverte Colombina, 3era Edición, México, 1990.

NIEBEL, Benjamín. Ingeniería de Métodos, Tiempos y movimientos. Editorial Alfa Omega, 3era Edición, México, 1992.

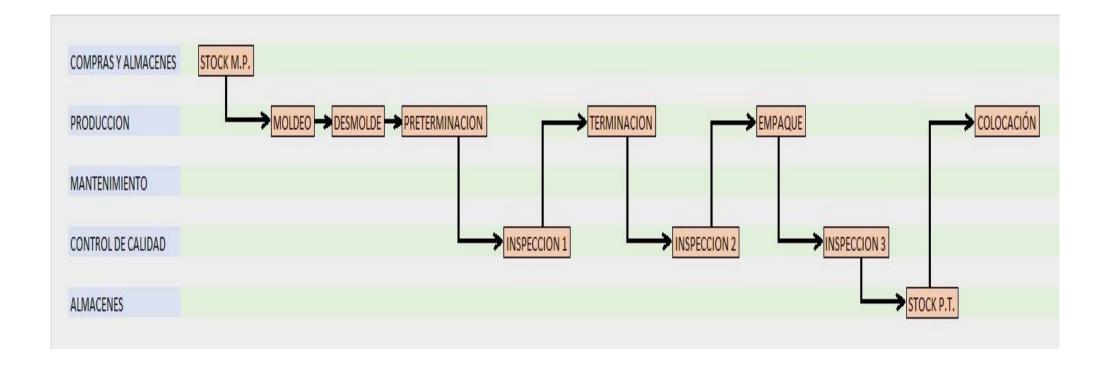
Programas utilizados

Dialux: cálculo de iluminación Autocad: Dibujos de Planos 2d Archicad: Dibujos de planta en 3d

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 18 de 163

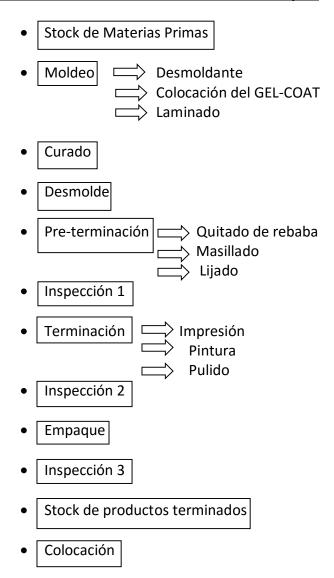
3. Diagrama de Bloque propuesto para la nueva forma de Producción

PROPOSICION DE ALTERNATIVAS Y TOMA DE DECISION


A lo largo de varias reuniones en las cuales participaron tanto los directivos de la empresa como los empleados, se determinaron cuellos de botella del proceso de fabricación y se analizaron distintas alternativas de organización de la producción, llegando al resultado que propondremos a continuación.

Uno de los mayores inconvenientes planteados fue la descoordinación de las tareas por lo que se llegó a la conclusión que lo mejor sería plantear una producción siguiendo una línea bien definida donde el producto recorra un camino siempre en una única dirección planteando áreas específicas donde los sucesivos pasos de trabajo que se le aplican al producto se encuentren correlativamente a lo largo de la planta. también se llegó a la conclusión que los cuellos de botella de la producción son el sector laminación y el área de pintura, planteándose también soluciones a estos puntos incorporando una maquina laminadora y una cabina de pintura de última generación.

Para poder analizar la producción actual, lo primero que realizamos fue un diagrama de bloque que nos permita analizar las operaciones, materias primas y productos, condiciones de operación, etc.


Este diagrama además nos permitirá hacer:

- Una documentación del proceso y así entender lo mejor,
- Estudiar tiempos y forma de producción.
- Ver las actividades en su conjunto, sus relaciones y cualquier incompatibilidad, cuello de botella o fuente de posible ineficiencia
- Mejorar el proceso que es nuestro objetivo.

Preparo:	Reviso:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 10-2015	Página 20 de 163

<u>Detalles de las actividades dentro de los bloques</u>

3.1. Propuestas de mejora en los distintos sectores de la producción Enumeraremos las propuestas de mejora para cada una de las zonas de trabajo, que luego especificaremos en la ingeniería de detalle.

3.1.1. Moldeo

- 3.1.1.1. Colocación del Gel-coat (Gelcotera)
- Se cambiará la forma de aplicación del Gel-coat Se selecciona una máquina que permite realizar la colocación del gelcoat y del catalizador de manera simultánea, con una alta productividad y agilidad.

La máquina seleccionada es de la marca **FFIBERMAQ**, y el modelo es **AIRLESS TM-04**, esta tiene excelente rendimiento y considerable economía de material dado que tiene una reducida emisión de partículas para el medio ambiente (evitando el desperdicio).

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 21 de 163

Se suma a esto una economía comprobada de aproximadamente 50% en relación al consumo de catalizador en una máquina de gelcoat spray-up convencional.

Características

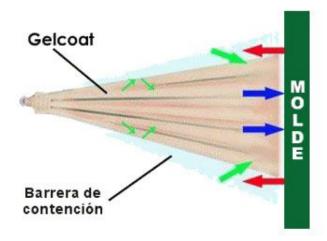
- Bomba propulsora, accionada por cilindro neumático, que fortalece el flujo estabilizado a través del pulmón acumulador de presión.
- Bomba esclava de alta precisión, en acero inoxidable, para dosificar el catalizador con faja de ajuste de 0,5 a 4,5% en volumen.
- Reservatorio para catalizador en polietileno can capacidad para 1 litro.
- Pistola aplicadora construida en aluminio durable, robusta y de bajo peso, accionada por pistón, con válvulas, picos y agujas en acero inoxidable
- Exclusivo sistema de mescla independientes. La mescla de los materiales es externa evitando asi el riesgo de endurecimiento.
- Pulmón distribuidor con filtro, válvulas reguladoras de presión, manometros y pico de limpieza. Juego de mangueras con 7,5 metros de largo.
- Coche de transporte.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 22 de 163

Datos adicionales

Productividad: 0,6 kg/min

Presión de trabajo: 70lb/pul2 = 4,92 kg/cm2
 Consumo de aire: 8PCM (pie cubico/min)


A la hora de la selección de esta herramienta tomamos mucho en cuenta la poca perdida de material con respecto a otros equipos. Esto es debido a un sistema de enucleación que forma un cono de aire (barrera de contención) en vuelta del gel y del catalizador, impidiendo que estos sean perdidos por over spray (flechas verdes menores). (Ver dibujo)

El impacto de la materia prima contra el molde y el retorno del material (flechas rojas) es bloqueado por la barrera de contención que la arroja nuevamente en el molde (flechas verdes mayores).

La salida del gelcoat es estrangulada en el pico de aplicación. Este pico permite de acuerdo a la necesidad del cliente el flujo del material y el abanico el cual puede ser horizontal o vertical y cuya uniformidad es mantenida por la bomba de gelcoat, disminuyendo el tiempo de producción de las piezas.

La forma de construcción del pico elimina completamente el contacto del material con el aire, reduciendo bastante los problemas de contaminación a traves de agua, aceite, etc., provenientes de la red de aire o de otra fuente cualquiera.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 23 de 163

En resumen podemos afirmar que con esta máquina tendremos una economía de materia prima además de una calidad superior y uniforme en la pintura.

3.1.1.2. Operación de Laminación

Se proponen dos mejoras:

• Confinación del ambiente de Laminado

Instalación de una cabina de laminado que permite confinar el ambiente de trabajo, mejorando la calidad del producto, considerando que es una de las actividades más importantes del proceso.

Esta cabina cuenta con circulación y filtrado del aire. La cabina seleccionada será provista por la empresa ANGELFIRE

- Dimensiones útiles: Longitud: 5.000 mm. Ancho: 4.000 mm. Alto: 3.000 mm.
- Caudal ventilación: 20.000 m3/h. Impulsión: 20.000 m3/h. Extracción.
- Potencia motores: 7,5 CV + 7,5 CV.
- Potencia de alumbrado: 24 x 65 W (1.560 W).
- Paredes: Acristaladas aisladas. Cortinas laterales.
- Modificar la forma de Laminado. Selección de Maquina Laminadora que realiza moldeo por contacto a inyección.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 24 de 163

A partir de poder mejorar los tiempos y la calidad del producto seleccionamos una Laminadora de la marca **FFIBERMAQ**, y el modelo es **INTER FLI-10**, la cual trabaja por el proceso INTER en modelo abierto. Este aplica simultáneamente resina de poliéster pre-acelerada, catalizador dosado (Mekp) y fibra de vidrio (roving continuo) picada, siendo necesario apenas la aplicación con rodillo (asentamiento) de ésta.

Cuenta además de una Bomba de resina con relación 8:1, dotada de pulmón de compensación que elimina cualquier posibilidad de oscilación en el abanico.

Tenemos una catalización rica y uniforme, que en caso de laminación, facilita el corte de la rebarba y disminuye considerablemente el tiempos que se gasta en este proceso. Se suma esto una economía comprobada aproximadamente de un 50% en relación al consumo de catalizador en una maquina Spray-UP.

Características

- Bomba propulsora de cilindro neumático de alta potencia, con relación 8:1 que favorece el flujo estabilizado a través de pulmón acumulador con aire comprimido.
- Bomba esclava de alta precisión, en acero inoxidable, para dosaje del catalizador (MEK-P) con franja de ajuste 0,5 a 4,5%.
- Pistolas aplicadora construida en aluminio durable, robusta y de bajo peso, con válvulas, picos, agujas en acero inoxidable, uniones y bujes de silicona.
- Motor neumático de alta potencia acoplado a la parte superior de la pistola aplicadora, compuesto por rotor porta lámina, rodillo prensa hilo y tubos de aire para expulsión de la fibra de la cámara de corte.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 25 de 163

- Pulmón distribuidor con filtro, válvulas reguladora de presión, manómetro y pico de limpieza.
- Juego de manguera con 7,5 metros de largo.
- Coche de transporte con columna fija y brazo giratorio tipo pantógrafo con alcance de 6 metros.

Datos adicionales

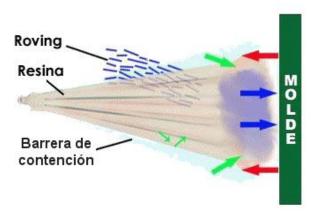
Productividad: 5kg/min.

 Presión de trabajo: 100lb/pul² = 7kg/cm² Consumo de aire: 25 PCM (pie cúbico/min)

Comparación de pérdida de material del equipo con respecto a otros:

Como se ve en el siguiente figura este sistema es de mucho mejor rendimiento que otros tipos equipos.

Resultados obtenidos en pruebas prácticas en una superficie vertical, perpendicular a esta, a una distancia de 60 cm.


Esta reducción es el resulta de un innovador sistema de nucleación que forma un cono de aire (barrera de contención) alrededor de la resina y del catalizador, impidiendo que estos sean perdidos por over spray (flechas verdes menores) y que también disminuye expresivamente la pérdida de estos materiales, que normalmente ocurre en el proceso Spray-Up.

El impacto de la materia prima contra el molde es medio y el retorno del material (flechas rojas) es detenido por la barrera de contención que lo arroja nuevamente en el molde (flechas verdes mayores).

La salida de la resina es estrangulada en el pico de aplicación, contruido en una aleación de acero, carbono y tungsteno de alta durabilidad y resistencia a la abrasión. Este pico determina, de acuerdo a la necesidad del cliente, el flujo de material y el tamaño del chorro (que puede ser horizontal o vertical y cuya uniformidad es mantenida por la bomba de resina), que en el caso de la laminadora, moja por completo el hilo roving antes de que éste llegue hasta el molde, no habiendo la

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 26 de 163

necesidad de mojarlo antes de la laminación, garantizando así una mejor adherencia de la fbra, facilitando la aplicación con rodillo y, y por consecuencia, disminuyendo el tiempo de producción de la piezas.

Además la forma de construcción del pico elimina completamente el contacto del material con el aire, reduciendo bastante los problemas de contaminación a través de agua, aceite, etc., provenientes de la red de aire.

3.1.2. Curado

Se realizará una sala de curado con calefacción y ventilación que permitirá mejorar las condiciones de humedad y temperatura, de manera de lograr un curado en el menor tiempo.

Esta cabina cuenta con calefacción, acondicionamiento, circulación y filtrado del aire. Las características se encuentran dentro de la selección de la cabina, la cual es similar a una cabina de pintura.

La cabina seleccionada será provista por la empresa ANGELFIRE

- Dimensiones útiles: Longitud: 5.000 mm. Ancho: 5.000 mm. Alto: 3.000 mm.
- Caudal ventilación: 20.000 m3/h. Impulsión: 20.000 m3/h. Extracción.
- Potencia motores: 7,5 CV + 7,5 CV.
- Potencia de alumbrado: 24 x 65 W (1.560 W).
- Paredes: Acristaladas aisladas. Cortinas laterales.
- Calefactores infrarrojos. Consumo 2 x 1,44 m³/h

3.1.3. Desmolde

Se optimizan los espacios con la nueva distribución en planta, para facilitar el trabajo de los operarios. (Ver Plano N°: PLO1 – Anexo I)

3.1.4. Pre Terminación

Operaciones: Quitado de rebaba, Masillado, Lijado

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 27 de 163

Se instalará una sala de lijado con extracción de aire, que permitirá mejorar las condiciones ambientales, de manera que no haya tanto polvillo suspendido en el ambiente.

Cabina de preterminación provista por la empresa ANGEFIRE:

- Dimensiones útiles: Longitud: 5.000 mm. Ancho: 4.500 mm. Alto: 3.000 mm.
- Caudal ventilación: 20.000 m3/h. Impulsión: 20.000 m3/h. Extracción.
- Potencia motores: 7,5 CV + 7,5 CV.
- Potencia de alumbrado: 24 x 65 W (1.560 W).
- Paredes: Acristaladas aisladas. Cortinas laterales.
- Filtros

Mejoras en las condiciones de trabajo, que permite mejorar los tiempos de producción, la calidad del producto y las condiciones de trabajo del operario.

- Iluminación
- Sistema de aire comprimido
- Extractores de Aire
- Confinación del ambiente
- Nuevas máquinas de lijar
- Nuevos tableros eléctricos
- Stock de Materias prima por ubicado en la zona de trabajo.

3.1.5. Terminación

3.1.5.1. Impresión y Pintura

Se instalará una nueva cabina de pintura, la cual cuenta con todos los elementos necesarios para poder realizar la tarea de manera excelente. Las mejoras de la cabina son:

- Iluminación
- Ambiente cerrado con acondicionamiento de aire
- Extractores con filtros de aire
- Nuevo sistema de aire comprimido (red y compresores)
- Nuevas pistolas de pintado

Cabina de pintura: "Puesto de pintura rápida"

- Marca: ANGELFIRE
- Dimensiones útiles: Longitud: 5.000 mm. Ancho: 4.500 mm. Alto: 3.000 mm.
- Caudal ventilación: 20.000 m3/h. Impulsión: 20.000 m3/h. Extracción.
- Potencia motores: 7,5 CV + 7,5 CV.
- Potencia alumbrado: 24 x 65 W (1.560 W).
- Piso: Parcialmente enrejillado. Bandejas recogida residuos. Filtros de retención en seco.
- Paredes: Acristaladas aisladas. Cortinas laterales.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 28 de 163

- Proceso. Secado mediante infrarrojos. Consumo 1,5 m³/h
- Varios: Purificador aire neumático pistolas. Purificador-lubricador aire neumático lijadoras. Electroválvula. Bases conexión infrarrojos 12 kW/220 V. Bases conexión 16 A/220 V.

3.1.5.2. Pulido

Se provee un sector para el pulido y control de calidad de los productos terminados, previo al embalaje final.

3.1.6. Empaque

Sistema de empaque en papel Film y un nuevo sistema de código de barras que será colocado en cada uno de ellos que permitirá identificarlos y mejorar el control de stock de productos terminados. (ver memorias - estructura del producto)

3.1.7. Stock Producto Terminado

Soportes que permiten estoquear los productos terminados dejando bien organizados y sin riesgo de que se puedan dañar. (ver Dibujo 3d) (ANEXO II)

3.1.8. Colocación

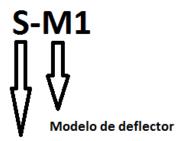
Provisión de nuevas herramientas que facilitan la colocación.

Para la fabricación de los soportes se mejorará la distribución de las herramientas ya existentes y se incorporan nuevas solicitadas por los responsables de la tarea.

4. Estudios de ingeniería de métodos

Para poder realizar un estudio profundo del proceso, planteamos efectuar una introducción del estudio de ingeniería de métodos.

La industria actualmente no cuenta con documentación alguna, ni soporte técnico de algún programa que nos permita un mejor control y la organización del mismo.


Preparó:		Revisó:	
Pablo Land	li/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 29 de 163

Es por ello que realizaremos:

4.1. Una codificación de las matrices existentes

Partimos de efectuar una codificación de las matrices existentes, la cual depende de la marca del camión y el modelo.

Para mostrar como efectuamos la codificación de las matrices daremos un ejemplo: El deflector para un camión marca Scania modelo G380 le corresponde el deflector con el siguiente código:

Marca del camión

Cuadro con los distintos tipos de matrices

A partir de relevamiento de la cantidad de matrices y para qué tipo de camión corresponde realizamos un cuadro indicando:

- La cantidad de matrices por marca de camión
- Y según el modelo de camión que sea, el tipo de deflector que le corresponde
- Además aprovechamos para realizar la codificación que le corresponde a cada una de las matrices que utilizaremos a lo largo del siguiente proyecto

Marcas	Cantidad	Código por marca, modelo camión y tipo matriz		
		S-M1 S-M2		
		Se utiliza para:	Se utiliza para:	
Scania	2 (dos)	112H	K310	
		113H	K340	
		G340	K380	
		G380	P310	
			R112	
			T112	
			T114	
			T124	

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 30 de 163

		V-M1	V-I	M2	V-M3
Volvo	2 (dos)	B12B BRT	FH FM	112	NL VM
Mercedes	1 (uno) (varían la alturas)	1114 113 1316 133 1420 153 1624 163 1918 233	17 1214 18 1320 17 1518 32 1634	1417 1521 1718	1218 1315 1418 1419 1526 1622 1720 1728
lveco	3 (tres)	I-M1 160Stralis 4910Strali	curs	//2 or450 orE23	I-M3 Euro cargo Euro Thech EuroTrakker
Volkswagen	2 (dos)	V-M1 15160 15180 17240 17210 17310 18310 19320		Cons	V-M2 stellation
Ford	2 (dos)	F-M1 F-M2 Cargo (viejo) Cargo (nuevo) Hasta el año 2004			
Renault	1 (uno)	R-M1 SPACE MAGNUM MIDLUM PREMIUM			

4.2. Estudio de la estructura del producto

Distintos niveles del producto

Nivel 0:

(Producto terminado a producir)

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 31 de 163

1. Deflector listo para colocar

Deflector Terminado listo para colocar, con código de barra y envoltorio.

Nivel 1:

(semielaborado o preparado)

1. Deflector listo para colocar

- 1. Deflector Terminado
- 2. Kid de instalación
- 3. Tensor Soporte
- 4. Soporte plegado
- 5. Etiquetas
- 6. Papel envoltorio (film)

Nivel 2:

(Insumos, materia prima o parte)

1. Deflector Terminado

- 1. Agentes desengrasante
- 2. Cera desmoldante
- 3. Alcohol polivinilico
- 4. Gel-coat
- 5. Resina
- 6. Fibra de vidrio
- 7. Catalizador
- 8. Acelerador
- 9. Masilla
- 10. Disco lijador
- 11. Lijas manuales
- 12. Impresión
- 13. Tiner
- 14. Pintura
- 15. Cera para pulir
- 16. Disco para pullir

2. Kit de instalación

- 1. Boulones de 8' milímetros
- 2. Tuercas 8'milimetros
- 3. Arandelas planas
- 4. Arandelas grower
- 5. Bolsas nylon

3. Tensor soporte

1. Planchuela ¾"

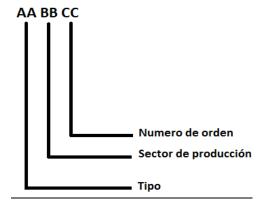
Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 32 de 163

- 2. Pintura esmalte sintético
- 3. Disco de amoladora y para sensitiva

4. Soporte plegado

- 1. Chapa 8 milímetros de espesor, plegada en forma de "L"
- 2. Pintura esmalte sintético (blanco)
- 3. Disco de amoladora de corte

5. Etiquetas


1. Etiqueta autoadhesiva, con código de barra, y datos del producto.

6. Papel envoltorio

1. Rollo de papel film de 1.20 metros de ancho, color transparente.

Esquema de codificación de productos que componen el proceso

Para poder identificar las partes de cualquier sistema de producción es necesario tener un sistema de codificación de todos los elementos intervinientes en el sistema, es por ello que efectuamos el siguiente sistema de codificación:

TIPO

PT = Producto Terminado

SE = Producto Semielaborado

MP = Materia Prima

IS = Insumo Primario

PK = Insumo de Embalaje

Sectores de Producción

Sectores	Numeración
Deposito de Matrices	01
Limpieza	02
Aplicación de desmoldante	03
Aplicación de gel-coat	04

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 33 de 163

Laminado	05
Curado	06
Desmolde	07
Quitado de rebaba, Masillado y Lijado	08
Pintado	09
Pulido y lustrado	10
Deposito de productos terminados	11
Fabricación de soportes	12
Colocación de deflectores	13

Número de Orden

Van desde el número: 00 al 99

Descripción de cada uno de los elementos que componen los niveles

NIVEL 0

1. Deflector listo para colocar

DESCRIPCIÓN: Deflector Terminado listo para colocar, con código de barra y envoltorio para que no se raye.

CANTIDAD: 1

CÓDIGO: PT-11-00 + Código de matriz

STOCK INICIAL: 1 por cada matriz

Ejemplo: si tenemos un deflector terminado listo para colocar de un camión lveco cursor450, la codificación es la siguiente:

PT-11-00 I-M2

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 34 de 163

NIVEL 1

1. Deflector terminado

DESCRIPCIÓN: Deflector terminado para colocar código de barra y luego envolver.

CANTIDAD: 1

CÓDIGO: SE-10-00 + Código de matriz

STOCK INICIAL: 1 por cada matriz

2. Kit de instalación

DESCRIPCIÓN: Conjunto de bulones, tuercas y arandelas para sujeción del deflector.

CANTIDAD: 1

CÓDIGO: SE-13-01

STOCK INICIAL: 1

3. Tensor soporte

DESCRIPCIÓN: Planchuelas de 3/16 X ¾, de 80 cm de longitud dependiendo del modelo de deflector, con los extremos agujereados, pintado con esmalte doble acción.

(Se adjunta plano soporte)

CANTIDAD: 2

CÓDIGO: SE-12-02 + código de deflector **STOCK INICIAL:** 4 por cada modelo de matriz

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 35 de 163

Soporte plegado

DESCRIPCIÓN: Chapa de 8 milímetros plegada en forma de "L", de 35cm de longitud y de 3cm de cada ala, con sus agujeros correspondiente para cada modelo, pintado con esmalte doble acción.

(Se adjunta plano soporte, Anexo I)

CANTIDAD: 2

CÓDIGO: SE-12-03 + código del deflector **STOCK INICIAL:** 4 por cada modelo de matriz

LEAD TIME:

4. Etiquetas

DESCRIPCIÓN: Etiquetas autoadhesivas, de 5cm x 10cm con código de barras, y datos sobre los deflectores. Unidad de compra equivalente 300 por modelo de deflector. Se adopta como código de barra el de tipo Código 39, dado que es uno de los más manejados hoy en día en la argentina.

CANTIDAD: 1

CÓDIGO: PK-11-00

STOCK INICIAL: 30 por cada matriz

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 36 de 163

Código 39

Datos del deflector

5. Papel de envoltorio

DESCRIPCIÓN: Papel film de 50 cm de ancho, de color transparente el cual permite cuidar a los productos terminados de cualquier tipo de ralladuras y suciedad una vez que el mismo está terminado.

CANTIDAD: 3.5 metros
CÓDIGO: PK-11-01
STOCK INICIAL: 2 rolo

Nivel 2

1. Deflector terminado

1. Agentes desengrasante

DESCRIPCIÓN: Limpiador desengrante de superficies lávales, su equilibrada formula contiene agentes limpiadores que aflojan la suciedad, disuelven y dispersan manchas de aceite, grasa mineral y animal, dejando la superficie del deflector libres de residuos.

CANTIDAD: 1/4litro
CÓDIGO: IS-02-00
STOCK INICIAL: 1

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/M	artín Cergneux Gustavo Puente 11	-2015 Página 37 de 163

2. Cera desmoldante

DESCRIPCIÓN: Es una ceras de parafina de base fuerte que se utiliza con éxito como desmoldantes en la fabricación de partes con las resinas. Muchas marcas proporcionan excelentes resultados.

CANTIDAD: ¼ kilo CÓDIGO: MP-03-00

STOCK INICIAL: 5kg (unidad 1kg)

LEAD TIME:

3. Alcohol polivinilico (PVA)

DESCRIPCIÓN: Una película de este permite un desmoldado perfecto del deflector, este se aplica como un recubrimiento en el molde, brindándole protección y ayudando a quitar el producto. Además Comparado con los sistemas de desmoldado con base de aceite/cera, ayuda a reducir costos. Los grados parcialmente hidrolizados son facilmente removibles con agua, y pueden eliminar o reducir las amenazas relacionadas con el empleo de limpiadores de molde agresivos necesarios en otros sistemas.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 38 de 163

CANTIDAD: ¼ Litro CÓDIGO: MP-03-01 STOCK INICIAL: 5 litros

1. Gel-coat

DESCRIPCIÓN: este nos permite tres efectos especial les a la hora de su colocación, como el de proteger el laminado contra los efectos de la intemperie y de la humedad, concebir un acabado colorido, liso y brillante a la superficie del deflector, y servir de base para aplicar pinturas.

CANTIDAD: 2 kilo
CÓDIGO: MP-04-02
STOCK INICIAL: 24 kilos

Carta de Colores

5. Resina

DESCRIPCIÓN: Resina poliester no saturada ortoftálica, de alta reactivadad, de viscosidad media y de muy buena estabilidad, diseñada especialmente para la fabricación de kits de reparación.

CANTIDAD: 15 kilo

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 39 de 163

CÓDIGO: MP-05-03

STOCK INICIAL: 230 kilos (un tambor)

LEAD TIME:

6. Fibra de vidrio

DESCRIPCIÓN: esta es la que provee al compuesto resistencia mecánica, estabilidad dimensional y resistencia al calor. Como el nuevo método de enfibrado es por medio de moldeo por inyección de resina a baja presión, a la fibra de vidrio se la conoce como woven roving (es una especie de cordones retorcidos y plegados en un telar). Un rodillo es el cartucho de la maquina, donde la misma va cortando con una longitud homogénea para incorporarse a la mezcla en el exterior del dispositivo.

CANTIDAD: 2 kilo CÓDIGO: MP-05-04

STOCK INICIAL: 22 kilos (Un rollo)

LEAD TIME:

6. Catalizador

DESCRIPCIÓN: El catalizador utilizado es el BUTANOX M50 que es un peróxido de Metil-Etil-Cetona (MEKP) que se emplea en el proceso de curado de resinas de poliéster y vinilester insaturado en presencia de un Acelerante de cobalto a temperatura ambiente.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 40 de 163

CANTIDAD: 1/4 litro
CÓDIGO: MP-05-05
STOCK INICIAL: 5 litros

LEAD TIME:

8. Acelerador

DESCRIPCIÓN: El acelerador utilizado es el Otoato de Cobalto al 2.5%, donde el Cobalto es un activísimo agente de oxidación. Promueve el rápido secado de películas de aceites poliinsaturados y barnices o resinas a base de los mismos.

9. Masilla Plástica de poliéster

DESCRIPCIÓN: esta se utiliza para darle el terminado final al producto, con ella se cubren los poros o pequeñas imperfecciones que hayan quedado luego del desmolde. El tipo de que se ocupa es la masilla de Poliéster, dado que esta tiene un satisfactorio tiempo de trabajo y fácil lijabilidad. Tiene a su vez una gran adherencia y elasticidad, los que nos permite tener un acabado libre de poros y así una mejor terminación.

CANTIDAD: 1/2 kilo CÓDIGO: IS-08-01 STOCK INICIAL: 4 kilos

LEAD TIME:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 41 de 163

10. Disco para Lijar

DESCRIPCIÓN: estos nos permiten darle una terminación final a la masilla, para luego poder pintar, se seleccionan de tres distintos grosor de grano 120 - 220 - 360. Hay distintas maquinas para realizar el lijado, es por ello que tenemos distintos tipos de discos que seleccionar, los cuales son los siguientes:

• Discos para taladro: Con el taladro agregandole los accesorios necesarios.

• **Bandas lijadoras:** son para las lijadoras de banda, esta consta de una banda cerrada de lija sujeta con tención entre los rodillos.

• Discos para la lijadoras orbital neumáticas:

CANTIDAD: 1/2 disco
CÓDIGO: IS-08-02
STOCK INICIAL: 10 discos

LEAD TIME:

Pre	eparó:	Revisó:	
Pal	blo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 42 de 163

11. Lijas manuales

DESCRIPCIÓN: estos nos permiten darle una terminación final a la masilla en los lugares que no se puede entrar con las lijadoras mecánicas, en especial en las molduras y lugares donde se colocan los soportes, es por ello que son de gran utilidad, se seleccionan de tres distintos grosor de grano 120 – 220 – 360 al igual que en los discos.

CANTIDAD: 1 unidades
CÓDIGO: IS-08-03
STOCK INICIAL: 15 unidades

12. Impresión

DESCRIPCIÓN: fondo fabricado a base de resinas nitrocelulósicas aditivos especiales y pigmentos inhibidores de la corrosión, la cual le da una terminación definitiva al producto antes de ser pintado.

CANTIDAD: 1 litro CÓDIGO: IS-09-04

STOCK INICIAL: 4 litros (una lata)

13. Thinner

DESCRIPCIÓN: es un diluyente, también conocido como adelgazador o rebajador de pinturas, es una mezcla de disolventes de naturaleza orgánica derivados del petróleo que han sido diseñados para disolver, diluir o adelgazar sustancias insolubles en agua, como la pintura, los aceites y las grasas.

CANTIDAD: 2 litros CÓDIGO: IS-09-05

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 43 de 163

STOCK INICIAL: 10 litros

14. Pintura

DESCRIPCIÓN: Esta se utiliza para dar terminación al deflector, en las mayoría de los casos como la fabricación se realiza a contra pedido, es decir según lo solicitado por el cliente. El color y el tipo de pintura que se utiliza dependerán del camión al cual será colocado el mismo.

CANTIDAD: 1^{1/2} litros CÓDIGO: IS-09-06

STOCK INICIAL: 2 litros de colores básicos

15. Cera para pulir

DESCRIPCIÓN: es un producto auxiliar elaborado con abrasivos especiales de grano uniforme en emulsión. El cual viene de dos tipos: granos finos y grano grueso.

CANTIDAD: 0.1 kilo
CÓDIGO: IS-10-07
STOCK INICIAL: 1 kilos

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 44 de 163

16. Disco para Pulir

DESCRIPCIÓN: este se utiliza para darle un brillo definitivo a la pintura de cada uno de los deflectores, el disco de pulir/lustrar es de corderito con respaldo floresta.

CANTIDAD: 1/2 disco
CÓDIGO: IS-10-08
STOCK INICIAL: 5 unidades

2. Kit de instalación

1. Tornillos de 8' milímetros

DESCRIPCIÓN: Boulones de 8'milimetros de diámetro y 2.5 cm de largo, con rosca milimétrica completa que sirve para la sujeción del deflector a la cabina del camión, se colocan dos por soporte.

CANTIDAD: 8 Unidad **CÓDIGO:** IS-13-09

STOCK INICIAL: 50 Unidades

2. Tuercas de 8' milímetros

DESCRIPCIÓN: Tuerca de 8´milimetros, con rosca milimétrica que sirve para la sujeción del deflector a la cabina del camión, se coloca dos por soporte. (*Una por Tornillo*).

CANTIDAD: 8 Unidades CÓDIGO: IS-13-10

STOCK INICIAL: 50 Unidades

	Preparó:	Revisó:	
	Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 45 de 163

3. Arandelas planas

DESCRIPCIÓN: Arandela plana para tornillo de 8'milimetros, que sirve para la sujeción del deflector a la cabina del camión, se coloca dos por soporte. (*Una por Tornillo*).

CANTIDAD: 8 Unidades CÓDIGO: IS-13-11

STOCK INICIAL: 50 Unidades

4. Arandelas grower

DESCRIPCIÓN: Arandela grower para tornillo de 8'milimetros, que sirve para la sujeción del deflector a la cabina del camión, se coloca dos por soporte. (Una por Tornillo).

CANTIDAD: 8 Unidades CÓDIGO: IS-13-12

15-13-12

STOCK INICIAL: 50 Unidades

5. Bolsa de nylon

DESCRIPCIÓN: Bolsa de polietileno con fondo sellado que se utiliza para colocar todos los elementos para la sujeción del deflector. Es decir en ella se colocan *(tornillos, tuercas, y las arandelas plana y grower)* que se necesita para la instalación del deflector.

CANTIDAD: 1 Unidad CÓDIGO: 1S-13-13

STOCK INICIAL: 250 Unidades

2. Tensor soporte

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 46 de 163

1. Planchuela ¾"

DESCRIPCIÓN: Planchuela de acero, de 3/16′ pulgadas de espesor, ¾′ pulgada de ancho y de 80 cm de longitud. La cual se utiliza para realizar el tensor soporte del deflector. La barra que se puede comprar viene de 6 metros de longuitud.

CANTIDAD: 0,8 metros
CÓDIGO: IS-12-14
STOCK INICIAL: 6 metros

2. Pintura esmalte sintético + Convertidor + Antióxido

DESCRIPCIÓN: Una vez terminado el soporte se lo pinta con este esmalte de triple acción, que hace de antióxido y a su vez le da el color deseado a la pieza.

CANTIDAD: 0.2 litros
CÓDIGO: IS-12-15
STOCK INICIAL: 4 litros

3. Disco de amoladora para desbaste

DESCRIPCIÓN: Disco de desbaste para amoladora el cual se utiliza para realizar la terminación de ambos tensores.

CANTIDAD: 0.02 unidades

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 47 de 163

CÓDIGO: IS-12-16 STOCK INICIAL: 5 unidades

4. Disco de corte para sensitiva

DESCRIPCIÓN: Disco de corte para sensitiva, el cual se utiliza para el corte de las planchuelas para la fabricación de los tensores.

CANTIDAD: 0,002 Unidad

CÓDIGO: IS-12-17 STOCK INICIAL: 1 Unidad

4. Soporte plegado

1. chapa de 8'milimetros de espesor, plegada en forma de "L"

DESCRIPCIÓN: Chapa de 8 milímetros plegada en forma de "L", de 35cm de longitud y de 3cm de cada ala

CANTIDAD: 0,35 metros

CÓDIGO: IS-12-18 STOCK INICIAL: 6 metros

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 48 de 163

2. Pintura esmalte sintético + Convertidor + Antióxido

DESCRIPCIÓN: Se utiliza el mismo tipo de pintura que para los soportes anteriores.

CANTIDAD: 0.2 litros
CÓDIGO: IS-12-15
STOCK INICIAL: 4 litros

3. Disco de amoladora para desbaste

DESCRIPCIÓN: Se utiliza los mismos discos que para los anteriores soportes.

CANTIDAD: 0.02 unidades

CÓDIGO: IS-12-16

STOCK INICIAL: 5 unidades

4. Disco de corte para sensitiva

DESCRIPCIÓN: Se utiliza los mismos discos que para los anteriores soportes.

CANTIDAD: 0,002 Unidad

CÓDIGO: IS-12-17 STOCK INICIAL: 1 Unidad

4.3. Explosión de materiales para una unidad de fabricación

Luego de haber realizado la codificación y descripción de todos los elementos necesarios para poder realizar la fabricación del producto, generamos un archivo con el programa Microsoft Excel que nos permite saber la cantidad de producto que necesitamos y su costo por cada código según el tipo (modelo) y cantidad de deflectores que se quieran realizar.

Se adjuntará el archivo de Microsoft Excel realizado y daremos un ejemplo para cada uno de los modelos de deflector que se fabrican para una unidad de producción.

La explosión de material se realiza para cada uno de los modelos debido a que como todos son diferentes en forma y tamaños, por lo cual varia la cantidad de material necesario para su fabricación, es por ello que es necesario tener uno paca uno de los modelos existentes.

Ejemplos de la explosión de materiales para una unidad de fabricación de cada unos de los modelos de fabricación:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 49 de 163

> Scania modelos M1

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Scania del modelo M1 con todos sus elementos para instalar	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Scania del modelo M1	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,5	metros	0,0175	3,15
IS-02-00	Desengrazante	1,00	litros	0,2	24
MP-03-00	Cera desmoldante	0,25	kilos	0,25	30
MP-03-01	Alchol polivinilico	0,25	litros	0,05	10
MP-04-02	Gel-coat	2	kilos	0,083333333	125
MP-05-03	Resinas	1,5	kilos	0,006521739	82,82608696
MP-05-04	Fibra de vidrio	2	kilos	0,090909091	74,18181818
MP-05-05	Catalizador	0,25	litros	0,25	28,75
MP-05-06	Acelerador	0,25	litros	0,25	63,5
IS-08-01	Masilla plastica poliester	0,5	kilos	0,125	43,75
IS-08-02	Disco de lijar	0,5	Unidad	0,1	4
IS-08-03	Lija manual	1	Unidad	0,1	6
IS-09-04	Impreción	1	litros	0,25	42,5
IS-09-05	Thinner	2	litros	0,02	52
IS-09-06	Pintura	1,5	litros	1,5	570
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8'milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	0,8	metros	0,133333333	85,33333333
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido	0,2	litros	0,2	116
IS-12-16	Disco de desbaste para amolador (para ambos soportes)	0,02	unidades	0,02	4,8
IS-12-17	Disco de corte para sensitiva (para ambos soportes)	0,002	unidades	0,002	
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"	, , , , , , , , , , , , , , , , , , ,	metros	0,058333333	<i>'</i>
				Costo MP de Fabricac	1600,586238

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 50 de 163

> Scania modelos M2

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Scania del modelo M2 con todos sus elementos para instalar	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Scania del modelo M2	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,5	metros	0,0175	3,15
IS-02-00	Desengrazante	1,25	litros	0,25	30
MP-03-00	Cera desmoldante	0,3125	kilos	0,3125	37,5
MP-03-01	Alchol polivinilico	0,3125	litros	0,0625	12,5
MP-04-02	Gel-coat	3,125	kilos	0,130208333	195,3125
MP-05-03	Resinas	1,875	kilos	0,008152174	103,5326087
MP-05-04	Fibra de vidrio	3,125	kilos	0,142045455	115,9090909
MP-05-05	Catalizador	0,3125	litros	0,3125	35,9375
MP-05-06	Acelerador	0,3125	litros	0,3125	79,375
IS-08-01	Masilla plastica poliester	0,625	kilos	0,15625	54,6875
IS-08-02	Disco de lijar	0,625	Unidad	0,125	5
IS-08-03	Lija manual	1	Unidad	0,1	. 6
IS-09-04	Impreción	1,25	litros	0,3125	53,125
IS-09-05	Thinner	3,125	litros	0,03125	81,25
IS-09-06	Pintura	1,875	litros	1,875	712,5
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8' milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	1	metros	0,166666667	106,6666667
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido	0,25	litros	0,25	145
IS-12-16	Disco de desbaste para amolador (para ambos soportes)		unidades	0,02	
IS-12-17	Disco de corte para sensitiva (para ambos soportes)		unidades	0,002	· · · · · · · · · · · · · · · · · · ·
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"	,	metros	0,058333333	·
10 12 10	Chapta de Orinninea os pregada en forma de L	0,33	incuos	0,000000000	42
				Costo MP de Fabrica	2017,040866

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 51 de 163

> Volvo modelo M1

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Volvo del modelo M1 con todos sus elementos para instalar	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Volvo del modelo M1	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,325	metros	0,016625	2,9925
IS-02-00	Desengrazante	0,95	litros	0,19	22,8
MP-03-00	Cera desmoldante	0,247	kilos	0,247	29,64
MP-03-01	Alchol polivinilico	0,247	litros	0,0494	9,88
MP-04-02	Gel-coat	1,9	kilos	0,079166667	118,75
MP-05-03	Resinas	1,49	kilos	0,006478261	82,27391304
MP-05-04	Fibra de vidrio	1,9	kilos	0,086363636	70,47272727
MP-05-05	Catalizador	0,247	litros	0,247	28,405
MP-05-06	Acelerador	0,247	litros	0,247	62,738
IS-08-01	Masilla plastica poliester	0,475	kilos	0,11875	41,5625
IS-08-02	Disco de lijar	0,475	Unidad	0,095	3,8
IS-08-03	Lija manual	1	Unidad	0,1	6
IS-09-04	Impreción	0,95	litros	0,2375	40,375
IS-09-05	Thinner	1,9	litros	0,019	49,4
IS-09-06	Pintura	1,49	litros	1,49	566,2
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8' milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	0,7	metros	0,116666667	74,66666667
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido		litros	0,19	·
IS-12-16	Disco de desbaste para amolador (para ambos soportes)		unidades	0,02	
IS-12-17	Disco de corte para sensitiva (para ambos soportes)		unidades	0,002	
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"	,	metros	0,058333333	
				Costo MP de Fabrica	1559,751307

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 52 de 163

> Volvo modelo M2

Codigo de material	Detalle +5% (Volvo M2)	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Volvo del modelo M2 con todos sus elementos para instalar	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Volvo del modelo M2	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,517	metros	0,017585	3,1653
IS-02-00	Desengrazante	1,05	litros	0,21	25,2
MP-03-00	Cera desmoldante	0,2375	kilos	0,2375	28,5
MP-03-01	Alchol polivinilico	0,2375	litros	0,0475	9,5
MP-04-02	Gel-coat	2,01	kilos	0,08375	125,625
MP-05-03	Resinas	1,575	kilos	0,006847826	86,9673913
MP-05-04	Fibra de vidrio	2,01	kilos	0,091363636	74,55272727
MP-05-05	Catalizador	0,2375	litros	0,2375	27,3125
MP-05-06	Acelerador	0,525	litros	0,525	133,35
IS-08-01	Masilla plastica poliester	0,525	kilos	0,13125	45,9375
IS-08-02	Disco de lijar	0,5	Unidad	0,1	4
IS-08-03	Lija manual	1	Unidad	0,1	6
IS-09-04	Impreción	1,05	litros	0,2625	44,625
IS-09-05	Thinner	2,01	litros	0,0201	52,26
IS-09-06	Pintura	1,575	litros	1,575	598,5
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8'milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	0,8	metros	0,133333333	85,33333333
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido	0,21	litros	0,21	121,8
IS-12-16	Disco de desbaste para amolador (para ambos soportes)	0,02	unidades	0,02	4,8
IS-12-17	Disco de corte para sensitiva (para ambos soportes)		unidades	0,002	0,24
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"		metros	0,058333333	
12 12 10	Chapa de o minimentos pregada en forma de L	0,33	IIICt/U3	0,00000000	42
				Costo MP de Fabrica	1712,223752
	<u>l</u>		<u> </u>	COSTO INIL NE LANTICA	1/12,225/52

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 53 de 163

> Volvo modelo M3

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Volvo del modelo M3 con todos sus elementos para instalar	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Volvo del modelo M3	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,552	metros	0,01776	3,1968
IS-02-00	Desengrazante	1,52	litros	0,3044	36,528
MP-03-00	Cera desmoldante	0,2537	kilos	0,2537	30,444
MP-03-01	Alchol polivinilico	0,2537	litros	0,05074	10,148
MP-04-02	Gel-coat	2,03	kilos	0,084583333	126,875
MP-05-03	Resinas	1,522	kilos	0,006617391	84,04086957
MP-05-04	Fibra de vidrio	2,03	kilos	0,092272727	75,29454545
MP-05-05	Catalizador	0,2537	litros	0,2537	29,1755
MP-05-06	Acelerador	0,2537	litros	0,2537	64,4398
IS-08-01	Masilla plastica poliester	0,5075	kilos	0,126875	44,40625
IS-08-02	Disco de lijar	0,5075	Unidad	0,1015	4,06
IS-08-03	Lija manual	1	Unidad	0,1	. 6
IS-09-04	Impreción	1	litros	0,25	42,5
IS-09-05	Thinner	2,03	litros	0,0203	52,78
IS-09-06	Pintura	1,522	litros	1,522	578,36
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8'milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	0,1	metros	0,016666667	10,66666667
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido	0,203	litros	0,203	117,74
IS-12-16	Disco de desbaste para amolador (para ambos soportes)	0.02	unidades	0.02	
IS-12-17	Disco de corte para sensitiva (para ambos soportes)	-,-	unidades	0,002	,-
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"		metros	0,058333333	
13-14-10	Chapa de o minimenos piegada en forma de L	0,53	IIICUUS	0,00000000	42
				Costo MP de Fabrica	1556,250432
	l		l	COSCO IVIF UE FAUITCA	1000,400452

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 54 de 163

> Mercedes Benz modelo M1

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Mercedes Benz del modelo M1 con todos sus elementos para	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Mersedes Benz del modelo M1	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	4	metros	0,02	3,6
IS-02-00	Desengrazante	1,15	litros	0,23	27,6
MP-03-00	Cera desmoldante	0,287	kilos	0,287	34,44
MP-03-01	Alchol polivinilico	0,287	litros	0,0574	11,48
MP-04-02	Gel-coat	2,3	kilos	0,095833333	143,75
MP-05-03	Resinas	1,725	kilos	0,0075	95,25
MP-05-04	Fibra de vidrio	2,3	kilos	0,104545455	85,30909091
MP-05-05	Catalizador	0,287	litros	0,287	33,005
MP-05-06	Acelerador	0,287	litros	0,287	72,898
IS-08-01	Masilla plastica poliester	0,575	kilos	0,14375	50,3125
IS-08-02	Disco de lijar	0,5	Unidad	0,1	4
IS-08-03	Lija manual	1	Unidad	0,1	6
IS-09-04	Impreción	1	litros	0,25	42,5
IS-09-05	Thinner	2,3	litros	0,023	59,8
IS-09-06	Pintura	1,725	litros	1,725	655,5
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8´milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8´ milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	1	metros	0,166666667	106,6666667
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido	0,23	litros	0,23	133,4
IS-12-16	Disco de desbaste para amolador (para ambos soportes)	0,02	unidades	0,02	4,8
IS-12-17	Disco de corte para sensitiva (para ambos soportes)	0,002	unidades	0,002	0,24
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"	0,35	metros	0,058333333	42
				Costo MP de Fabrica	1805,106258

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 55 de 163

> Iveco modelo M1

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Iveco del modelo M1 con todos sus elementos para instalar	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Iveco del modelo M1	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,39	metros	0,01695	3,051
IS-02-00	Desengrazante	0,97	litros	0,194	23,28
MP-03-00	Cera desmoldante	0,2425	kilos	0,2425	29,1
MP-03-01	Alchol polivinilico	0,2425	litros	0,0485	9,7
MP-04-02	Gel-coat	1,94	kilos	0,080833333	121,25
MP-05-03	Resinas	1,455	kilos	0,006326087	80,34130435
MP-05-04	Fibra de vidrio	1,94	kilos	0,088181818	71,95636364
MP-05-05	Catalizador	0,2425	litros	0,2425	27,8875
MP-05-06	Acelerador	0,2425	litros	0,2425	61,595
IS-08-01	Masilla plastica poliester	0,485	kilos	0,12125	42,4375
IS-08-02	Disco de lijar	0,485	Unidad	0,097	3,88
IS-08-03	Lija manual	1	Unidad	0,1	6
IS-09-04	Impreción	0,97	litros	0,2425	41,225
IS-09-05	Thinner	1,94	litros	0,0194	50,44
IS-09-06	Pintura	1,455	litros	1,455	552,9
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8'milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	0,8	metros	0,133333333	85,33333333
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido	0,2	litros	0,2	116
IS-12-16	Disco de desbaste para amolador (para ambos soportes)	0,02	unidades	0,02	4,8
IS-12-17	Disco de corte para sensitiva (para ambos soportes)	0,002	unidades	0,002	0,24
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"		metros	0,058333333	
				Costo MP de Fabrica	1565,972001

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 56 de 163

> Iveco modelo M2

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Iveco del modelo M2 con todos sus elementos para instalar	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Iveco del modelo M2	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,64	metros	0,0182	3,276
IS-02-00	Desengrazante	1,04	litros	0,208	24,96
MP-03-00	Cera desmoldante	0,26	kilos	0,26	31,2
MP-03-01	Alchol polivinilico	0,26	litros	0,052	10,4
MP-04-02	Gel-coat	2,08	kilos	0,086666667	130
MP-05-03	Resinas	1,56	kilos	0,006782609	86,13913043
MP-05-04	Fibra de vidrio	2,08	kilos	0,094545455	77,14909091
MP-05-05	Catalizador	0,26	litros	0,26	29,9
MP-05-06	Acelerador	0,26	litros	0,26	66,04
IS-08-01	Masilla plastica poliester	0,52	kilos	0,13	45,5
IS-08-02	Disco de lijar	0,5	Unidad	0,1	. 4
IS-08-03	Lija manual	1	Unidad	0,1	
IS-09-04	Impreción	1,04	litros	0,26	44,2
IS-09-05	Thinner	2,08	litros	0,0208	54,08
IS-09-06	Pintura	1,56	litros	1,56	592,8
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8'milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	1	metros	0,166666667	106,6666667
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido	0,26	litros	0,26	150,8
IS-12-16	Disco de desbaste para amolador (para ambos soportes)	0,02	unidades	0,02	4,8
IS-12-17	Disco de corte para sensitiva (para ambos soportes)	0,002	unidades	0,002	0,24
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"	0,35	metros	0,058333333	42
				Costo MP de Fabrica	1702,705888

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 57 de 163

> Iveco modelo M2

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Ivec del modelo M3 con todos sus elementos para instalar	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Scania del modelo M3	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,78	metros	0,0189	3,402
IS-02-00	Desengrazante	1,08	litros	0,216	25,92
MP-03-00	Cera desmoldante	0,27	kilos	0,27	32,4
MP-03-01	Alchol polivinilico	0,27	litros	0,054	10,8
MP-04-02	Gel-coat	2,16	kilos	0,09	135
MP-05-03	Resinas	1,62	kilos	0,007043478	89,45217391
MP-05-04	Fibra de vidrio	2,16	kilos	0,098181818	80,11636364
MP-05-05	Catalizador	0,27	litros	0,27	31,05
MP-05-06	Acelerador	0,27	litros	0,27	68,58
IS-08-01	Masilla plastica poliester	0,54	kilos	0,135	47,25
IS-08-02	Disco de lijar	0,54	Unidad	0,108	4,32
IS-08-03	Lija manual	1	Unidad	0,1	6
IS-09-04	Impreción	1,08	litros	0,27	45,9
IS-09-05	Thinner	2,16	litros	0,0216	56,16
IS-09-06	Pintura	1,62	litros	1,62	615,6
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8'milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8' milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	1	metros	0,166666667	106,6666667
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido	0.2	litros	0,2	116
IS-12-16	Disco de desbaste para amolador (para ambos soportes)		unidades	0,02	
IS-12-17	Disco de corte para sensitiva (para ambos soportes)		unidades	0,002	,
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"		metros	0,058333333	·
13-12-10	Linapa de o minimetros piegada en forma de L	0,33	IIIEUUS	0,000000000	42
				Costo MP de Fabrica	1714,212204

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 58 de 163

➤ Volkswagen modelo M1

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Volkswagen del modelo M1 con todos sus elementos para ins	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Volkswagen del modelo M1	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,15	metros	0,01575	2,835
IS-02-00	Desengrazante	0,90	litros	0,18	21,6
MP-03-00	Cera desmoldante	0,225	kilos	0,225	27
MP-03-01	Alchol polivinilico	0,225	litros	0,045	g
MP-04-02	Gel-coat	1,8	kilos	0,075	112,5
MP-05-03	Resinas	1,35	kilos	0,005869565	74,54347826
MP-05-04	Fibra de vidrio	1,8	kilos	0,081818182	66,76363636
MP-05-05	Catalizador	0,225	litros	0,225	25,875
MP-05-06	Acelerador	0,225	litros	0,225	57,15
IS-08-01	Masilla plastica poliester	0,45	kilos	0,1125	39,375
IS-08-02	Disco de lijar	5	Unidad	1	40
IS-08-03	Lija manual	1	Unidad	0,1	6
IS-09-04	Impreción	0,9	litros	0,225	38,25
IS-09-05	Thinner	1,8	litros	0,018	46,8
IS-09-06	Pintura	1,35	litros	1,35	513
IS-10-07	Cera de pulir	0,1	kilos	0,2	
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8'milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	0,8	metros	0,133333333	85,33333333
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido	0,2	litros	0,2	116
IS-12-16	Disco de desbaste para amolador (para ambos soportes)	0,02	unidades	0,02	4,8
IS-12-17	Disco de corte para sensitiva (para ambos soportes)		unidades	0,002	
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"	,	metros	0,058333333	
					4.5
				Costo MP de Fabrica	1521,620448

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 59 de 163

➤ Volkswagen modelo M2

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Volkswagen del modelo M2 con todos sus elementos para ins	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Volkswagen del modelo M2	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,85	metros	0,01925	3,465
IS-02-00	Desengrazante	1,10	litros	0,22	26,4
MP-03-00	Cera desmoldante	0,275	kilos	0,275	33
MP-03-01	Alchol polivinilico	0,275	litros	0,055	11
MP-04-02	Gel-coat	2,2	kilos	0,091666667	137,5
MP-05-03	Resinas	1,65	kilos	0,007173913	91,10869565
MP-05-04	Fibra de vidrio	2,2	kilos	0,1	81,6
MP-05-05	Catalizador	0,275	litros	0,275	31,625
MP-05-06	Acelerador	0,275	litros	0,275	69,85
IS-08-01	Masilla plastica poliester	0,55	kilos	0,1375	48,125
IS-08-02	Disco de lijar	0,5	Unidad	0,1	4
IS-08-03	Lija manual	1	Unidad	0,1	6
IS-09-04	Impreción	1,1	litros	0,275	46,75
IS-09-05	Thinner	2,2	litros	0,022	57,2
IS-09-06	Pintura	1,65	litros	1,65	627
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8' milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8'milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	1	metros	0,166666667	106,6666667
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido		litros	0,2	
IS-12-16	Disco de desbaste para amolador (para ambos soportes)	,	unidades	0,02	
	Disco de corte para sensitiva (para ambos soportes)		unidades	0,002	,
	Chapa de 8 milímetros plegada en forma de "L"	,	metros	0,058333333	
		3,00		0,0000000	
				Costo MP de Fabrica	1736,885362

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 60 de 163

> Ford modelo M1

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Ford del modelo M1 con todos sus elementos para instalar	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Ford del modelo M1	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,255	metros	0,016275	2,9295
IS-02-00	Desengrazante	0,93	litros	0,186	22,32
MP-03-00	Cera desmoldante	0,2325	kilos	0,2325	27,9
MP-03-01	Alchol polivinilico	0,2325	litros	0,0465	9,3
MP-04-02	Gel-coat	1,86	kilos	0,0775	116,25
MP-05-03	Resinas	1,395	kilos	0,006065217	77,02826087
MP-05-04	Fibra de vidrio	1,86	kilos	0,084545455	68,98909091
MP-05-05	Catalizador	0,2325	litros	0,2325	26,7375
MP-05-06	Acelerador	0,2325	litros	0,2325	59,055
IS-08-01	Masilla plastica poliester	0,465	kilos	0,11625	40,6875
IS-08-02	Disco de lijar	0,5	Unidad	0,1	4
IS-08-03	Lija manual	1	Unidad	0,1	6
IS-09-04	Impreción	0,93	litros	0,2325	39,525
IS-09-05	Thinner	1,89	litros	0,0189	49,14
IS-09-06	Pintura	1,395	litros	1,395	530,1
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8'milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	0,8	metros	0,133333333	85,33333333
	Pintura esmalte sintético + Convertidor + Antióxido		litros	0,2	
IS-12-16	Disco de desbaste para amolador (para ambos soportes)		unidades	0,02	
IS-12-17	Disco de corte para sensitiva (para ambos soportes)	· ·	unidades	0,002	
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"		metros	0,058333333	
13-17-10	Chapa de o minimenos pregada en formid de L	0,33	incu us	U,U3033333	42
				Costo MP de Fabrica	1520,890185

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 61 de 163

> Ford modelo M2

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Ford del modelo M2 con todos sus elementos para instalar	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Ford del modelo M2	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	3,745	metros	0,018725	3,3705
IS-02-00	Desengrazante	1,07	litros	0,214	25,68
MP-03-00	Cera desmoldante	0,2675	kilos	0,2675	32,1
MP-03-01	Alchol polivinilico	0,2675	litros	0,0535	10,7
MP-04-02	Gel-coat	2,14	kilos	0,089166667	133,75
MP-05-03	Resinas	1,605	kilos	0,006978261	88,62391304
MP-05-04	Fibra de vidrio	2,14	kilos	0,097272727	79,37454545
MP-05-05	Catalizador	0,2675	litros	0,2675	30,7625
MP-05-06	Acelerador	0,2675	litros	0,2675	67,945
IS-08-01	Masilla plastica poliester	0,535	kilos	0,13375	46,8125
IS-08-02	Disco de lijar	0,5	Unidad	0,1	4
IS-08-03	Lija manual	1	Unidad	0,1	6
IS-09-04	Impreción	1,07	litros	0,2675	45,475
IS-09-05	Thinner	2,14	litros	0,0214	55,64
IS-09-06	Pintura	1,605	litros	1,605	609,9
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	28
IS-13-10	Tuerca de 8'milimetros	8	Unidad	0,08	20
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,6
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,5
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	1	metros	0,166666667	106,6666667
	Pintura esmalte sintético + Convertidor + Antióxido	0,2	litros	0,2	116
	Disco de desbaste para amolador (para ambos soportes)	0,02	unidades	0,02	4,8
	Disco de corte para sensitiva (para ambos soportes)		unidades	0,002	
	Chapa de 8 milímetros plegada en forma de "L"		metros	0,058333333	
13 12-10	Chapa de Omminiettos pregada en forma de	0,33	ilic ti U3	0,000000000	42
				Costo MP de Fabrica	1702,395625
				COSTO INIL DE LADLICA	1/02,395025

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 62 de 163

> Renault M1

Codigo de material	Detalle	Cantidad	Unidad de medida	Unidad de compra	Valor estimado de producción
PT-11-00 S-M1	Deflector de Renault del modelo M1 con todos sus elementos para instala	1	Unidad	1	
SE-10-00 S-M1	Deflector solo de Renault del modelo M1	1	Unidad	1	
SE-13-01 S-M1	Kid de instalación	1	Unidad	1	
SE-12-02 S-M1	Tensor soporte	2	Unidad	2	
SE-12-03 S-M1	Soporte plegado	2	Unidad	2	
PK-11-00 S-M1	Etiquetas	1	Unidad	0,001	0,055
PK-11-01	Papel envoltorio (film)	4,06	metros	0,0203	3,654
IS-02-00	Desengrazante	1,16	litros	0,232	27,84
MP-03-00	Cera desmoldante	0,29	kilos	0,29	34,8
MP-03-01	Alchol polivinilico	0,29	litros	0,058	11,6
MP-04-02	Gel-coat	2,32	kilos	0,096666667	14
MP-05-03	Resinas	1,74	kilos	0,007565217	96,07826087
MP-05-04	Fibra de vidrio	2,32	kilos	0,105454545	86,05090909
MP-05-05	Catalizador	0,29	litros	0,29	33,35
MP-05-06	Acelerador	0,29	litros	0,29	73,66
IS-08-01	Masilla plastica poliester	0,58	kilos	0,145	50,75
IS-08-02	Disco de lijar	0,5	Unidad	0,1	
IS-08-03	Lija manual	1	Unidad	0,1	(
IS-09-04	Impreción	1,16	litros	0,29	49,3
IS-09-05	Thinner	2,32	litros	0,0232	60,32
IS-09-06	Pintura	1,74	litros	1,74	661,7
IS-10-07	Cera de pulir	0,1	kilos	0,2	36
IS-10-08	Disco de pulir	0,5	Unidad	0,5	70
IS-13-09	Bulones de 8'milimetros de diámetro y 2.5 cm de largo	8	Unidad	0,08	2
IS-13-10	Tuerca de 8'milimetros	8	Unidad	0,08	21
IS-13-11	Arandela plana para tornillo de 8'milimetros	8	Unidad	0,08	18,4
IS-13-12	Arandela grower para tornillo de 8'milimetros	8	Unidad	0,08	19,
IS-13-13	Bolsa de polietileno con fondo sellado	1	Unidad	0,02	0,:
IS-12-14	Planchuela de acero de 3/16' de espesor, ¾' de ancho y de 80 cm de long	1	metros	0,166666667	106,666666
IS-12-15	Pintura esmalte sintético + Convertidor + Antióxido	0,2	litros	0,2	110
IS-12-16	Disco de desbaste para amolador (para ambos soportes)	0,02	unidades	0,02	4,
IS-12-17	Disco de corte para sensitiva (para ambos soportes)	0,002	unidades	0,002	
IS-12-18	Chapa de 8 milímetros plegada en forma de "L"	0,35	metros	0,058333333	4.
				Costo MP de Fabrica	1805,86483

4.4. Estudios de tiempos

Comenzamos realizando el Value Stream Mapping del proceso actual en la planta con la colaboración de todos los empleados intervinientes, de donde extrajimos los tiempos actuales de producción para un deflector.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 63 de 163

COMPRAS Y ALMACENES	STOCK M.P.											
PRODUCCION		MOLDEO	DESMOLDE	PRETERMINACION		TERMINACION		EMPAQUE			COLOCACIÓN	
MANTENIMIENTO												
CONTROL DE CALIDAD					INSPECCION 1		INSPECCION 2		INSPECCION 3			
ALMACENES										STOCK P.T.		
LEAD TIME		700	55	150	30	420	30	10	30	20	180	1
VALOR AGREGADO		460	20	120	10	360	10	0	10	10	120	1
%VA		65,71%	36,36%	80,00%	33,33%	85,71%	33,33%	0,00%	33,33%	50,00%	66,67%	68,9

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 64 de 163

Se indica el lead time y el tiempo de valor agregado en cada paso del proceso productivo.

Luego de ésto, en base a la teoría de Lean Manufacturing, realizamos el análisis de los 7 desperdicios:

- Sobreproducción
- Tiempo de espera
- Transporte
- Sobreprocesamiento
- Exceso de inventario
- Exceso de movimiento
- Retrabajo

En base a las reuniones con los actores intervinientes en los procesos, hay muchos tiempos que son beneficiosos para esta producción ya que a más tiempo de fraguado es más fácil el lijado por ejemplo y a mejor secado de la pintura es más fácil el lustrado, etc.

Nuestro estudio se enfocó principalmente en organizar las tareas de los distintos operarios para lograr abastecer la producción propuesta de 5 deflectores por día.

Los desperdicios que se minimizarán luego de aplicar las mejoras son: transporte, sobreprocesamiento, exceso de movimiento de los operarios, sobreproducción, retrabajo.

Lo que planteamos para la nueva forma de producción es una Producción Continua:

Se da cuando se minimizan los tiempos ociosos y de espera, de forma que siempre se estén ejecutando las mismas operaciones, en las mismas máquinas, para obtención del mismo producto, con una disposición en cadena. Se conoce también como configuración por producto. Cada máquina y equipo o zona de trabajo, están diseñados para realizar siempre la misma operación y preparados para aceptar de forma automática el trabajo que le es suministrado por una maquina o zona precedente. Los operarios realizan la misma tarea, en el mismo producto. De esta manera se logra un flujo de producción ininterrumpido.

Luego del planteamiento de las mejoras propuestas en los distintos procesos se considera que se va a lograr obtener los siguientes tiempos:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 65 de 163

COMPRAS Y ALMACENES	STOCK M.P.											
PRODUCCION		MOLDEO	DESMOLDE	PRETERMINACION		TERMINACION		EMPAQUE			COLOCACIÓN	
MANTENIMIENTO												
CONTROL DE CALIDAD					INSPECCION 1		INSPECCION 2		INSPECCION 3			
ALMACENES										STOCK P.T.		
EAD TIME		405	55	60	30	230	30	40	30	10	180	107
/ALOR AGREGADO		265	20	30	10	80	10	20	10	10	120	57.
6VA		65,43%	36,36%	50,00%	33,33%	34,78%	33,33%	50,00%	33,33%	100,00%	66,67%	53,749

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 66 de 163

Como no están implementadas estas mejoras no podemos analizar los cuellos de botella de la línea de producción propuesta.

Luego de la implementación de las mejoras propuestas se deben realizar reuniones de mejora continua para ir puliendo el proceso y encontrando nuevos desperdicios que surjan y así planificar nuevas mejoras para continuar su reducción tendiendo a eliminarlos.

El nuevo plantel será formado por: seis operarios, un pintor, y un encargado de producción el cual también efectúa tareas de control de calidad en los diferentes pasos del proceso productivo.

Diariamente el encargado asigna al operario encargado de matrices los modelos que se comenzarán ese día, mientras que el resto del plantel prosigue con la producción según fue comenzada cronológicamente. A la hora de efectuar la producción los operarios tienen asignadas tareas específicas del proceso según se detalla en el presente capitulo.

La forma de producción sigue siendo contra pedido, el dueño solicita la fabricación de un deflector según pedidos de clientes. Se cuenta con stock de un deflector de cada modelo semi-terminado pintado con fondo.

Para la colocación de los mismos se acurda con el cliente un día, una vez que se tiene el deflector terminado y los anclajes para dicha colocación. Por ello es clave tener una buena coordinación entre la fabricación de los deflectores y de los anclajes

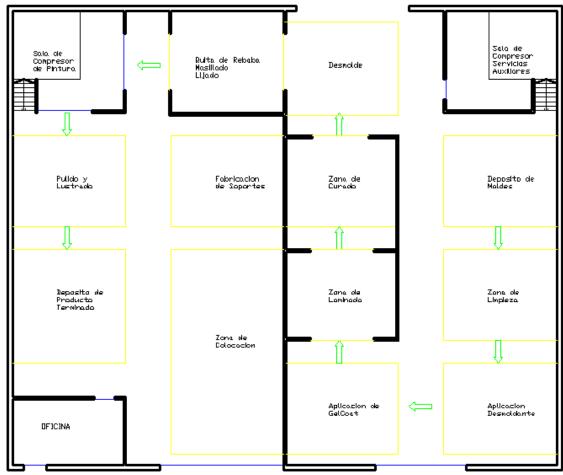
Se indica el Lead time y el tiempo de valor agregado en cada paso del proceso productivo.

Luego del planteamiento de las mejoras propuestas en los distintos procesos, se considera que se va a lograr obtener los siguientes tiempos

5. Layout

DISEÑO DE LA NUEVA FORMA DE PRODUCCION

A partir de las propuestas de mejoras surgidas, se organizo la producción según los aportes de los intervinientes en los diferentes procesos, generándose el Layout que se presenta a continuación.


Debido al aumento en la demanda de los productos, los cambios en los diseños, la tecnología, los estándares, los procesos y demás variables asociadas a una organización, es que nos obliga a diseñar un nuevo layout que integre de forma sistemática, las características de los productos, los volúmenes de producción y los procesos productivos necesarios.

Se propuso un método de producción en línea, para lo cual se organizaron las áreas de producción de tal manera que el Layout permita que el producto sea fabricado a lo

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 67 de 163

largo de un proceso continuo y secuencial hasta la obtención de un producto terminado, optimizando la gestión de las materias primas, planificación de servicios y la organización de depósitos.

5.1. Lay-out en 2d

Para determinar la ubicación física de los distintos sectores de la planta, sus maquinarias y equipos correspondientes, puestos de trabajo, almacenes, demás dependencias que hacen al funcionamiento y los movimientos que debe realizar el producto desde la etapa de materia prima hasta el producto terminado se tuvieron en cuenta los siguientes objetivos:

- Incremento de la producción.
- Disminución en los retrasos de la producción.
- Ahorro de área ocupada.
- Acortamiento del tiempo de fabricación.
- Disminución de la congestión o confusión.
- Facilidad de ajuste a los cambios de condiciones.
- Reducción del riesgo para la salud y aumento de la seguridad de los trabajadores.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 68 de 163

De esta manera se logró que tanto las áreas de trabajo, de equipos y pasillos estén ubicadas y dimensionadas de forma que sean económicas para el trabajo y al mismo tiempo seguras y satisfactorias para los operarios.

En el plano N°=PLO1 se encuentra representado el Layout diseñado con sus dimensiones acotadas. (Ver anexo I)

5.2. Lay-out en 3d

La creación de un modelo de la fábrica digital 3D, nos permitirá evaluar múltiples escenarios hipotéticos de diseño para determinar la mejor solución y así optimizar su operación.

La nueva forma de distribución en planta del proceso, es la que se ve en la próxima figura dibujada a partir del programa Archicad 3d.

Se anexa para la ingeniería de detalle todo el programa, con todos los cambios propuestos. (ver anexo II)

5.3. Propuesta de una nueva forma de producción

En la nueva Organización de Producción las **Áreas de Producción** se organizarán según la agrupación de tareas que realiza en la línea cada operario, éstos tienen asignadas tareas específicas del proceso de la siguiente manera:

El nuevo plantel será formado por siete operarios, un pintor, y un encargado de producción el cual también efectúa tareas de control de calidad en los diferentes pasos del proceso productivo.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 69 de 163

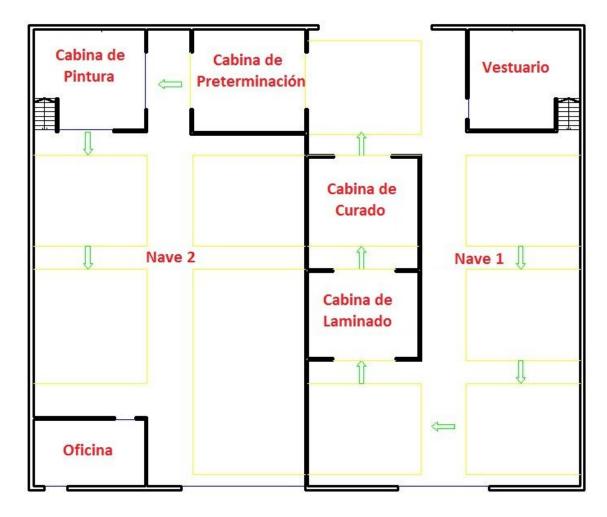
Operario	Áreas	Tareas asignadas
1	Matrices	- Selección de moldes
		- limpieza de moldes
		 aplicación de agente desmoldante
		- aplicación de gel coat
2	Laminado	- laminado
3 y 4	lijado	- desmolde
		- quitado de rebabas
		- masillado
		- lijado
Pintor	Pintura	- pintura
		- control de calidad
5 y 6	Lustrado y	- pulido
	empaque	- lustrado
		- empaque
7	Soportería	- realizar soportería
	У	- colocación de productos
	colocación	
Encargado	producción	- encargado de producción
de		- control de calidad
producción		

Diariamente el encargado asigna al operario encargado de matrices los modelos que se comenzarán ese día, mientras que el resto del plantel prosigue con la producción según fue comenzada cronológicamente.

La forma de producción sigue siendo <u>contra pedido</u>, el dueño solicita la fabricación de un deflector según pedidos de clientes. Se cuenta con stock de un deflector de cada modelo semi-terminado pintado con fondo.

Para la colocación de los mismos se acurda con el cliente un día, una vez que se tiene el deflector terminado y los anclajes para dicha colocación. Por ello es clave tener una buena coordinación entre la fabricación de los deflectores y de los anclajes.

6. Diseño y cálculo de Iluminación


6.1. Introducción

En esta sección lo que se busca es obtener una iluminación adecuada y apropiada para permitir que las personas realicen las tareas visuales de modo eficiente y preciso, ya que una correcta iluminación influye positivamente en el cumplimiento de la tarea (mayor velocidad y menor índice de errores), en la seguridad y el número de accidentes.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 70 de 163

6.2. Sectores

En la siguiente figura se observa los siguientes sectores a iluminar:

Los sectores son:

Sector	Actividad		
1	Nave	industrial	
	N°1		
2	Nave	industrial	
	N°2		
3	Cabina	de	
	Laminado		
4	Cabina de curado		
5	Vestuarios y		
	baños		
6	Cabina de		
	Preterminación		
7	Cabina de pintura		
8	Oficina		

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 71 de 163

Tipo de recinto o actividad por sectores

Sector 1 - Nave industrial N° 1

Abarca la nave 1 donde existen pasillos, depósito de matrices y las principales actividades que realizan son limpieza de matriz, aplicación de desmoldante y de gelcoat, laminación y curado, y por ultimo desmolde.

Sector 2 - Nave industrial N° 2

Abarca la nave 2 donde existen pasillos, donde las principales actividades que realizan son el quitado de rebaba, masillado y lijado, pulido y lustrado con posterior control de calidad, depósitos de productos terminados y lugar de colocación.

Sector 3 – Cabina de Laminado

Esta comprende el laminado con la maquina en fibradora, por el método de contacto a inyección.

Sector 4 – Cabina de Curado

Esta cabina se coloca los deflectores recién laminados, para que se produzca el proceso de curado.

Sector 5 – Vestuarios y baños

En este sector se encuentra la zona de los vestuarios para cambio de ropa del personal, y la para sanitario de los mismos.

Sector 6 – Cabina de pre terminación

Comprende la cabina de pre terminación las actividades de quitado de rebaba, masillado y lijado.

Sector 7 – Cabina de pintura

Comprende la cabina de pintura, donde se da el praimer y luego el pintando de los deflectores.

Sector 8 - oficina

Este sector abarca las oficinas tanto la técnica (OT) como la privada (OP), en ambas las principales tareas se desarrollan sobre computadoras.

6.3. Iluminación media

Para obtener la iluminación media requerida en cada sector nos basamos en el manual de luminotecnia de la AADL y la norma DIN 5053, donde según la clase de recinto y actividades que se realizan en cada sector recomiendan un nivel mínimo de iluminación media. Si existen diversas actividades y/o tipo de recinto en un mismo sector se adopta el de mayor nivel. Los valores que se obtuvieron se reflejan en la siguiente tabla.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 72 de 163

Sector	Emed[lux]
1	500
2	500
3	550
4	350
5	200
6	500
7	500
8	500

6.4. Índice de reproducción cromática

El índice de reproducción cromática, (Ra), es un parámetro que pretende establecer el grado de exactitud con que se reproducen los colores de los objetos, Es de gran importancia tener en conocimiento que Ra establece la norma DIN 5053 para cada actividad que se realiza en el recinto a calcular la iluminación ya que con este índice se determina el tipo de iluminación a utilizar. La norma establece los siguientes valores.

Sector	Ra
1	40 < Ra < 70
2	40 < Ra < 70
3	70 < Ra < 85
4	40 < Ra < 70
5	70 < Ra < 85
6	70 < Ra < 85
7	70 < Ra < 85
8	70 < Ra < 85

6.5. Sistema de alumbrado

Se opta por un alumbrado general de forma de obtenerse una iluminación uniforme sobre toda la zona a iluminar, este sistema presenta la ventaja de que la iluminación es independiente de los puestos de trabajo, por lo que estos pueden ser cambiados en la forma que se desee ante la cualquier necesidad. Además proporciona las mejores condiciones de visibilidad, dando al ambiente un aspecto sereno y armonioso.

6.6. Selección de luminarias y lámparas del proyecto

Para la selección del tipo de luminaria se tiene en cuenta el campo de aplicación de la luminaria y el tipo de iluminación que se desea lograr. También se busca obtener un alto rendimiento luminoso acompañado de estética y un bajo costo de mantenimiento en instalación.

6.6.1. Selección de luminaria

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 73 de 163

Sectores 1 y 2

En los sectores 1 y 2 se utilizarán luminarias del tipo campana marca Philips modelo AL500LA, estas luminarias están diseñadas para lograr un alto rendimiento luminoso y generar ambientes con mayor sensación de luz mediante iluminación directa e indirecta.

Sector 3-4-6 y 7

En sector 3-4-6 y 7 se utilizarán luminarias de la línea estanco marca Philips modelo PACIFIC TCW216 las cuales son especialmente indicadas para iluminación de espacios donde se necesitan altas prestaciones lumínicas con alto grado de estanqueidad, tiene un grado de hermeticidad IP66.

Sector 5 y 8

Para la selección del tipo de luminaria y de la lámpara se recomienda la utilización de fluorescentes, los cuales lo seleccionamos del catalogo de PHILIPS para oficinas.

Consideramos a nuestro criterio que la luminaria que mejor se ajusta es la luminaria Luminaria TBS5318, la característica que presenta la misma es de embutir para tubo fluorescente lineal TLD ó fluorescente compacta PLL; cuerpo prismático en metal esmaltado con pintura termo convertible en polvo color blanco, louver doble parabólico C5 de bajo brillo en aluminio especular de alta pureza. Apto para montar en cielorrasos modulares ó tipo durlock.

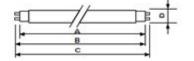
Además esta línea está diseñada específicamente para la iluminación de espacios de oficinas, donde se requiere como cualidad principal el control del deslumbramiento directo y evitar brillos molestos sobre los planos verticales de las pantallas de PC; esto se traduce en alto confort visual.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 74 de 163

6.6.2. Selección de lámparas.

Sectores 1 y 2

Para sectores 1 y 2 se utilizaran lámparas del tipo descarga alta intensidad en mercurio halogenado ya que este tipo de lámparas posen un alto rendimiento luminoso y buena reproducción cromática. Marca Philips modelo HPI – P400 – BU R de 400W la cual posee un índice de reproducción cromática, Ra=69 y un flujo luminoso de 32.500 lúmenes.


Sector 3 - 4 - 6 - 7 y 8

Y en los sectores 3, 4, 6, 7 y 8 se utilizaran tubos fluorescentes trifósforo, marca Philips cuya lámpara es la Master TL-D 36W/840, estos tubos poseen un recubrimiento fluorescente especial de tres bandas que proporcionan una muy buena reproducción de colores (Ra=85) mejorando la apariencia de los objetos expuestos y el confort visual en la ejecución de tareas.

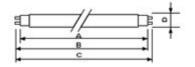
Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 75 de 163

VIDA ÚTIL UTILIZANDO BALASTO ELECTRÓNICO: 20.000 HS

DESCRIPCIÓN	Base	Cópigo	CANT POR CAJA	Tensión Lám. (V)	CORRIENTE LAMP. (A)	TEMP. COLOR (K)	REND COLOR (RA)	FLUJO LUMIN. (LM)	REND LAM. (LM/W)	VIDA PROM (HRS.)(*)	Cotas
MASTERTL-D 18W/830	GI3	927920083036	25	59	0.36	3000	85	1310	73	13000	30
MASTERTL-D 18W/840	GI3	927920084036	25	59	0.36	4000	85	1310	73	13000	-1
MASTERTL-D 30W/830	GI3	927920583036	25	98	0.36	3000	85	2400	80	13000	2
MASTERTI-D.36W877	GI3	927921082723	25	103	044	2700	85	3350	93	15000	- 3
MASTERTL-D 36W830	GI3	927921083036	25	103	0.44	3000	85	3250	90	15000	3
MASTERTL-D 36W840	GI3	927921084036	25	103	0.44	4000	85	3250	90	15000	3
MASTERTL-D 36W865	GI3	927921086536	25	103	0.44	6500	85	3070	85	15000	3
MASTERTL-D 58W/830	GI3	927922083034	25	111	0.67	3000	85	5150	89	15000	4
MASTERTL-D 58W/840	GI3	927922084034	25	111	0.67	4000	85	5150	89	15000	4

Considerando que el fabricante no brinda la información sobre el rendimiento de la lámpara, adoptamos:

$$\eta_L = 0,71$$


Sector 5

Y en los sectores 5 se utilizaran tubos fluorescentes trifósforo, marca Philips cuya lámpara es la Master TL-D 18W/840, estos tubos poseen un recubrimiento fluorescente especial de tres bandas que proporcionan una muy buena reproducción de colores (Ra=85) mejorando la apariencia de los objetos expuestos y el confort visual en la ejecución de tareas.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 76 de 163

VIDA ÚTIL UTILIZANDO BALASTO ELECTRÓNICO: 20.000 HS

DESCRIPCIÓN	BASE	Cópigo	CANT POR CAJA	Tensión Lam. (V)	CORRIENTE LAMP. (A)	TEMP. COLOR (K)	REND COLOR (RA)	FLUJO LUMIN. (LM)	REND LAM. (LM/W)	VIDA PROM (HRS.)(*)	Cotas
MASTERTL-D 18W/830	GI3	927920083036	25	59	0.36	3000	85	1310	73	13000	- 1
MASTERTL-D 18W/840	GI3	927920084036	25	59	0.36	4000	85	1310	73	13000	
MASTER TL-D 30W/830	GI3	927920583036	25	98	0.36	3000	85	2400	80	13000	2
MASTER TI -D 36W877	GI3	927921082723	25	103	044	2700	85	3350	93	15000	3
MASTERTL-D 36W830	GI3	927921083036	25	103	0.44	3000	85	3250	90	15000	3
MASTER TL-D 36W840	GI3	927921084036	25	103	0.44	4000	85	3250	90	15000	3
MASTERTL-D 36W865	GI3	927921086536	25	103	0.44	6500	85	3070	85	15000	3
MASTERTL-D 58W/830	G13	927922083034	25	111	0.67	3000	85	5150	89	15000	4
MASTERTL-D 58W/840	GI3	927922084034	25	111	0.67	4000	85	5150	89	15000	4

6.7. Calculo de la cantidad de luminarias por el método del rendimiento de la iluminación.

En los siguientes cálculos de iluminación de interiores se realizan siguiendo el criterio de cálculo del manual de luminotecnia de la firma Osram, el cual indica la siguiente secuencia de cálculo;

Flujo total necesario

$$\phi_T = \frac{E_m * S}{\eta * f_c}$$

Donde;

 $\phi_{\text{T}} =_{\text{Flujo luminoso total necesario [lúmenes]}}$

Em = Iluminancia media [Lux]

 η = Rendimiento de la iluminación [%]

fc= factor de conservación de la instalación [%] (0,5≤ fc ≤0,8)

Este factor está determinado por la pérdida del flujo luminoso de las lámparas, por envejecimiento, polvo o suciedad. Este valor oscila entre 0,50 y 0,80. A mayor valor corresponde a lugares limpios con limpiezas frecuentes.

El rendimiento de la iluminación se lo obtiene aplicando;

$$\eta = \eta_R * \eta_L$$

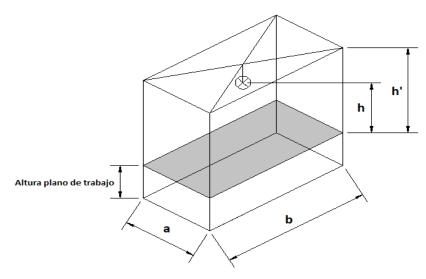
Donde;

 $\eta_{\text{R}} =_{Rendimiento \ del \ local}$

 $\eta_{L} = Rendimiento de la luminaria$

Y el índice del local lo determinamos;

$$K = \frac{a * b}{h * (a + b)}$$


Donde;

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 77 de 163

a y b = Dimensiones de la superficie rectangular del recinto h´ = altura entre el plano de trabajo y el techo h = altura optima

$$h = \frac{4}{5} * h'$$

Se adopta como altura de plano de trabajo 0,8 metros.

Los ábacos a utilizar son los siguientes:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 78 de 163

TABLA 20-4. Rendimientos del local (Si las curvas de distribución no son simétricas, se toma la curva más apreciada en la tabla como valor medio) Techo 21 0.5 0.8 0,5 0,3 Pared 0.5 0.3 0,3 0.3 Luminaria Q3 0,3 0.1 Indice del local A 1 0.6 0,60 0,55 0,54 0,60 0,55 0,61 0,56 0,78 0,69 0,56 0,68 0,70 0,69 0,64 0,64 0,70 0,65 0,72 0,8 0,65 0,87 0,66 0.75 1 0,75 0,70 0,70 0,76 0,71 0,77 0,71 0,93 0,79 0,72 0,80 0,86 0,79 1,25 0,81 0,76 0,75 0,82 0,77 0,83 0,78 0,97 0,84 0,84 0,79 0,86 1,5 0,79 0,81 0,87 0,82 0,99 0,90 0,83 0,87 2 0,89 0,85 0,84 0,91 0,86 0,93 0,88 0.97 1,02 0.90 0.90 2,5 0,88 0,87 0,90 0,92 0,94 0,97 1,04 0,92 1,02 0,96 0,93 3 0,94 0,91 0,90 0,97 0,93 1,00 0,95 1,05 1,06 1,00 0,95 1,05 4 0,97 0,93 0,94 0,99 0,97 1,04 1,00 1,06 0,97 1,11 5 0,99 0,96 0,95 1,00 0,98 1,06 1,02 1,06 1,14 1,09 0,98 0,70 A 1.1 0,6 0,93 0,74 0,74 0.69 0.89 0.72 0,73 0,70 0,68 0,82 0,76 0,8 1,01 0,82 0,77 0,81 0,94 0,78 0,77 0,80 0,76 0,93 1,05 0,88 0,86 0,98 0,82 0,82 0.83 0,82 0.84 0.81 1.00 1,25 1,10 0,93 0,88 0,91 0,87 1,01 0,90 0,86 0,88 0,85 1,06 1,5 1,13 0,97 0,92 0,94 0,90 1,03 0,93 0,89 0,92 0,88 1,09 2 1,17 1,03 0,97 0,99 0.95 1,05 0.97 0,93 0.95 0.92 1,14 2,5 1,20 1,07 1,01 1,03 0,98 1,05 0,99 0,96 0,97 0,94 1,17 3 1,21 1,10 1,05 1,05 1,00 1,06 1,00 0,98 0,98 0,96 1,20 1,24 1,00 4 1,15 1,10 1,08 1.03 1,06 1,02 1,00 0,98 1,23 1,13 5 1,25 1,17 1,10 1,06 1,07 1,03 1,01 1,01 0,99 1,24 0,6 0,72 0,68 0,41 0,41 A 1.2 0,48 0,42 0,47 0,42 0,47 0,47 0,40 0,8 0,85 0,61 0,54 0,59 0,53 0,80 0.59 0,53 0,58 0,52 0,52 0.94 0,69 0,62 0,67 0.61 0.87 0,67 0.61 0.65 0.60 0.59 1 1,25 1,01 0,78 0,71 0,75 0,69 0,92 0,75 0,68 0,73 0,68 0,66 1,05 0,83 0,74 0,96 1,5 0,75 0,80 0,80 0,73 0,77 0,72 0,71 2 0.91 0,84 1.11 0.84 0,87 0,81 1,00 0,86 0,80 0,79 0,78 2,5 1,15 0,97 0,90 0,92 0,87 1,02 0,91 0,85 0,88 0,83 0,82 1,18 1,21 3 1,02 0,96 0,96 0.91 1,04 0,94 0,89 0,91 0,87 0,86 1,09 1,02 0,96 1,05 0,97 0,94 0,95 0,91 0,90 4 1,02 5 1,23 1,12 1,06 1,04 1,00 1,06 1,00 0,96 0,97 0,94 0,92 A 2 0,6 0,63 0,39 0,33 0,39 0,33 0,61 0,38 0,34 0,37 0,33 0,32 0,53 0,74 0,50 8,0 0,78 0,45 0,51 0,45 0,51 0,45 0,45 0,44 0,54 0,88 0,62 0,54 0,60 0,82 0,60 0,53 0,58 0,53 0.52 1,25 0,95 0,71 0,63 0,68 0,62 0,88 0,68 0,62 0,66 0,60 0,60 1,5 1,02 0,78 0,70 0,76 0,69 0,93 0,75 0,68 0,72 0,68 0,66 2 0,78 0,89 0,98 0,77 0,80 0,77 1,10 0,81 0,85 0.83 0.742,5 1,14 0,96 0,88 0,91 0,85 1,01 0,89 0,83 0,85 0,82 0,80 1,01 1,03 3 1,17 0,89 0,95 0,87 0,88 0,86 0,94 0,92 0,84 4 1,21 1,07 1,01 1,00 0,95 1,04 0,96 0,92 0,93 0,90 0,89 5 1.23 1,12 1.06 1.03 0.98 1.05 0.99 0.95 0.96 0.93 0.92 A 2.1 0.6 0,61 0,36 0,29 0,35 0,29 0,58 0,33 0,29 0,35 0,29 0,28 0,8 0,74 0,47 0,39 0,45 0,38 0,69 0,46 0,39 0,45 0,38 0,37 0,77 0,82 0,55 0,52 0,45 0,45 0,46 0.53 0,51 0.44 0.45 1,25 0,90 0,63 0,54 0,61 0,53 0,82 0,61 0,53 0,59 0,53 0,51 0,95 0,67 0,64 0,69 0,60 0,59 0,87 0,59 0,57 0,56 1,5 0,66 2 1,02 0,79 0,70 0,75 0,68 0,92 0,75 0,67 0,72 0,65 0,64 2,5 0,87 0,96 0.77 1,08 0.78 0,81 0,74 0.81 0.73 0.72 0,70 3 0,93 0,86 0,79 0,99 0,81 1,13 0,84 0,85 0,78 0,76 0,75 4 1,17 1,01 0,92 0.94 0,87 1,02 0,90 0,88 0,83 0,81 0,85 5 0,96 0,95 1,02 0,93 1,18 1,04 0,90 0,87 0,89 0.85 0,83

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 79 de 163

6.7.1. Cálculo de iluminación sector 1 y sector 2

Las dimensiones son las siguientes;

a = 12m

b = 20m

h' = 4.5m - 0.7m = 3.8m

$$\frac{4}{5}*h' = \frac{4}{5}*3,8m = 3,04m$$

$$h = \frac{4}{5}*6 = \frac{4}{5}*3,8m = 3,04m$$

Color del Techo = gris- chapa zinc (factor de reflexión 0,3)

Color de las paredes = gris- chapa zinc (factor de reflexión 0,3)

Color del suelo = Hormigón (factor de reflexión 0,45)

Considerando la altura del plano de trabajo 0,7m

Aplicando los datos anteriores a las formulas desarrolladas inicialmente;

indice del local:
$$k = \frac{12 \text{ m} \cdot 20 \text{ m}}{3,04 \text{ m} \cdot (12 \text{ m} + 20 \text{ m})} = 2.46$$

Con los coeficientes de reflexión y el factor K obtenemos de tabla 20-4 el rendimiento del local

$$\eta_{R} = 0.85$$

La luminaria elegida es la AL500LA con una lámpara HPI Plus BU de 400W seleccionada del catálogo Phillips, cuyo rendimiento es de η_L =0,75 y un flujo luminoso 32500 lúmenes.

El nivel de iluminación media a lograr es Em = 500 lux.

fc=0,65 factor de conservación.

Entonces el flujo total necesario es;

$$\phi_{T} = \frac{E_{m} * S}{\eta * f_{c}}$$

$$\phi_{T} = \frac{500 \text{ lux} * 12m * 20m}{0.75 * 0.88 * 0.65} = 279720 \text{ lumenes}$$

Por lo que la cantidad de luminarias a instalar

$$N = \frac{\phi_T}{\phi_L} = \frac{279720 l \text{úmenes}}{32500 l \text{úmenes}} = 8.6 \Rightarrow 8 l \text{ámparas}$$

Mediante la herramienta Dialux y conociendo las dimensiones del recinto a iluminar, se verifica el valor de iluminancia media indicada anteriormente por norma instalando la cantidad de luminarias previamente calculadas. (Ver anexo IV)

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 80 de 163

6.7.2. Cálculo de iluminación sector 3 (cabina de laminado)

Las dimensiones son las siguientes;

a = 5m

b = 4m

h' = 3m - 0.7m = 2.3m

h = h' = 2,3m

Color del Techo = blanco (factor de reflexión 0,8)

Color de las paredes = blancas (factor de reflexión 0,8)

Color del suelo = Hormigón (factor de reflexión 0,4)

Aplicando los datos anteriores a las formulas desarrolladas inicialmente;

indice del local:
$$k = \frac{5 \text{ m}*4 \text{ m}}{2,3 \text{m}*(5 \text{ m}+4 \text{m})} = 0,96$$

Con los coeficientes de reflexión y el factor K obtenemos de tabla 20-4 el rendimiento del local

$$\eta_{R} = 0.88$$

La luminarias de la línea estanco marca Philips modelo PACIFIC TCW216 con una lámpara Master TL-D 36W/830 seleccionada del catálogo Phillips y cuyo rendimiento es de η_L =0,71 y un flujo luminoso 3250 x2 lúmenes.

El nivel de iluminación media a lograr es Em = 500 lux.

fc=0,65 factor de conservación.

Flujo luminoso de la luminaria es de 6700 lúmenes.

Entonces el flujo total necesario es;

$$\phi_T = \frac{E_m * S}{\eta * f_c}$$

$$\phi_{\rm T} = \frac{500 \, \text{lux*5m*4m}}{0.71*0.88*0.65} = 24623 \, \text{lúmenes}$$

Por lo que la cantidad de lamapras a instalar

$$N = \frac{\varphi_T}{\varphi_I} = \frac{24623 l \text{úmenes}}{3250 l \text{úmenes}} = 7,57 l \text{amparas}$$

Como esta luminaria tiene alojamiento para dos lámparas, el total de Luminarias a instalar será de 4 Luminarias.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 81 de 163

Mediante la herramienta Dialux y conociendo las dimensiones del recinto a iluminar, se verifica el valor de iluminancia media indicada anteriormente por norma instalando la cantidad de luminarias previamente calculadas. (Ver anexo IV)

6.7.3. Cálculo de iluminación sector 4 (cabina de curado)

Las dimensiones son las siguientes;

a = 5m

b = 5m

h' = 3m - 0.7m = 2.3m

h = h' = 2,3m

Color del Techo = blanco (factor de reflexión 0,8)

Color de las paredes = blancas (factor de reflexión 0,8)

Color del suelo = Hormigón (factor de reflexión 0,4)

Aplicando los datos anteriores a las formulas desarrolladas inicialmente;

indice del local:
$$k = \frac{5 \text{ m} \cdot 5 \text{ m}}{2,3 \text{ m} \cdot (5 \text{ m} + 5 \text{ m})} = 1,08$$

Con los coeficientes de reflexión y el factor K obtenemos de tabla 20-4 el rendimiento del local

$$\eta_{R} = 0.9$$

La luminarias de la línea estanco marca Philips modelo PACIFIC TCW216 con una lámpara Master TL-D 36W/830 seleccionada del catálogo Phillips, cuyo rendimiento es de η_L =0.71 y un

El nivel de iluminación media a lograr es Em = 500 lux. fc=0,65 factor de conservación.

Entonces el flujo total necesario es;

$$\phi_T = \frac{E_m * S}{\eta * f_c}$$

$$\phi_{\rm T} = \frac{500 \, \text{lux*5m*5m}}{0.71*0.9*0.65} = 30095 \, \text{lúmenes}$$

Por lo que la cantidad de luminarias a instalar

$$N = \frac{\phi_T}{\phi_L} = \frac{30095 l \text{úmenes}}{3250 \, l \text{úmenes}} = 9,2 \, l \text{ámparas}$$

Como esta luminaria tiene alojamiento para dos lámparas, el total de Luminarias a instalar será de 4 Luminaria.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 82 de 163

Mediante la herramienta Dialux y conociendo las dimensiones del recinto a iluminar, se verifica el valor de iluminancia media indicada anteriormente por norma instalando la cantidad de luminarias previamente calculadas. (Ver anexo IV) 6.7.4. Cálculo de iluminación sector 5 (Baños)

Las dimensiones son las siguientes;

a = 4.5m

b = 5m

h' = 3m - 0.7m = 2.3m

h = h' = 2,3m

Color del Techo = blanco (factor de reflexión 0,8)

Color de las paredes = blancas (factor de reflexión 0,8)

Color del suelo = Hormigón (factor de reflexión 0,4)

Considerando la altura del plano de trabajo 0,7m

Aplicando los datos anteriores a las formulas desarrolladas inicialmente;

indice del local:
$$k = \frac{4.5 \text{ m} \cdot 5 \text{ m}}{2.3 \text{m} \cdot (4.5 \text{ m} + 5 \text{m})} = 1.02$$

Con los coeficientes de reflexión y el factor K obtenemos de tabla 20-4 el rendimiento del local

$$\eta_R = 0.62$$

La luminaria elegida es la Luminaria TBS5318 con una lámpara Master 2TL-D 18W/840 seleccionada del catálogo Phillips, cuyo rendimiento es de η_L =0,8 y un flujo luminoso 2700x2 lúmenes.

El nivel de iluminación media a lograr es Em = 200 lux. fc=0,65 factor de conservación.

Entonces el flujo total necesario es;

$$\phi_T = \frac{E_m * S}{\eta * f_c}$$

$$\phi_T = \frac{200 \text{ lux}*4.5 \text{m}*5 \text{m}}{0.85*0.83*0.75} = 8504 \text{lúmenes}$$

Por lo que la cantidad de luminarias a instalar

$$N = \frac{\phi_T}{\phi_L} = \frac{8504 l \text{úmenes}}{2700 l \text{úmenes}} = 3,14 l \text{ámparas}$$

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 83 de 163

Como esta luminaria tiene alojamiento para dos lámparas, el total de Luminarias a instalar será de 1 Luminaria y una individual en lavatorio.

Mediante la herramienta Dialux y conociendo las dimensiones del recinto a iluminar, se verifica el valor de iluminancia media indicada anteriormente por norma instalando la cantidad de luminarias previamente calculadas. (Ver anexo IV)

6.7.5. Cálculo de iluminación sector 6 (cabina de pre terminación)

Las dimensiones son las siguientes;

a = 5m

b = 4,5m

h' = 3m - 0.7m = 2.3m

h = h' = 2,3m

Color del Techo = blanco (factor de reflexión 0,8)

Color de las paredes = blancas (factor de reflexión 0,8)

Color del suelo = Hormigón (factor de reflexión 0,4)

Aplicando los datos anteriores a las formulas desarrolladas inicialmente;

indice del local:
$$k = \frac{5 \text{ m}*4.5 \text{ m}}{2.3 \text{m}*(5 \text{ m} + 4.5 \text{ m})} = 1$$

Con los coeficientes de reflexión y el factor K obtenemos de tabla 20-4 el rendimiento del local

$$\eta_{R} = 0.89$$

La luminarias de la línea estanco marca Philips modelo PACIFIC TCW216 con una lámpara Master TL-D 36W/830 seleccionada del catálogo Phillips, cuyo rendimiento es de η_L =0,71 y un flujo luminoso 3250x2 lúmenes.

El nivel de iluminación media a lograr es Em = 500 lux. fc=0,65 factor de conservación.

Entonces el flujo total necesario es;

$$\phi_T = \frac{E_m * S}{\eta * f_c}$$

$$\phi_T = \frac{500 lux*5m*4,5m}{0.71*0.89*0.65} = 21911 lúmenes$$

Por lo que la cantidad de luminarias a instalar

$$N = \frac{\phi_T}{\phi_L} = \frac{21911 l \text{úmenes}}{3250 \, \text{l} \text{úmenes}} = 6,8 \, \text{l} \text{ámparas}$$

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 84 de 163

Como esta luminaria tiene alojamiento para dos lámparas, el total de Luminarias a instalar será de 4 Luminaria.

Mediante la herramienta Dialux y conociendo las dimensiones del recinto a iluminar, se verifica el valor de iluminancia media indicada anteriormente por norma instalando la cantidad de luminarias previamente calculadas. (Ver anexo IV)

6.7.6. Cálculo de iluminación sector 7 (cabina de pintura)

Las dimensiones son las siguientes;

a = 4.5m

b = 5m

h' = 3m - 0,65m = 2,35m

h = h' = 2,35m

Color del Techo = blanco (factor de reflexión 0,8)

Color de las paredes = blancas (factor de reflexión 0,8)

Color del suelo = Hormigón (factor de reflexión 0,4)

Aplicando los datos anteriores a las formulas desarrolladas inicialmente;

indice del local:
$$k = \frac{4.5 \text{ m} \cdot 5 \text{ m}}{2.35 \text{ m} \cdot (4.5 \text{ m} + 5 \text{ m})} = 1$$

Con los coeficientes de reflexión y el factor K obtenemos de tabla 20-4 el rendimiento del local

$$\eta_{R} = 0.94$$

La luminarias de la línea estanco marca Philips modelo PACIFIC TCW216 con una lámpara Master TL-D 36W/830 seleccionada del catálogo Phillips, cuyo rendimiento es de η_L =0,71 y un flujo luminoso 3250x2 lúmenes.

El nivel de iluminación media a lograr es Em = 500 lux. fc=0,65 factor de conservación.

Entonces el flujo total necesario es;

$$\phi_T = \frac{E_m * S}{\eta * f_c}$$

$$\phi_{\rm T} = \frac{500 \, \text{lux} * 4.5 \text{m} * 5 \text{m}}{0.71 * 0.94 * 0.65} = 25933 \text{lúmenes}$$

Por lo que la cantidad de luminarias a instalar

$$N = \frac{\phi_T}{\phi_L} = \frac{25933 l \text{úmenes}}{3250 \, l \text{úmenes}} = 7,97 \, l \text{ámparas}$$

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 85 de 163

Como esta luminaria tiene alojamiento para dos lámparas, el total de Luminarias a instalar será de 4 Luminaria.

Mediante la herramienta Dialux y conociendo las dimensiones del recinto a iluminar, se verifica el valor de iluminancia media indicada anteriormente por norma instalando la cantidad de luminarias previamente calculadas. (Ver anexo 4)

6.7.7. Cálculo de iluminación sector 8 (Oficina)

Las dimensiones son las siguientes;

a = 3 m

b = 5m

h' = 3m - 0,65m = 2,35m

h = h' = 2,35m

Color del Techo = blancas (factor de reflexión 0,8)

Color de las paredes = blancas (factor de reflexión 0,8)

Color del suelo = Hormigón (factor de reflexión 0,45)

Altura del plano de trabajo 0,65m

Aplicando los datos anteriores a las formulas desarrolladas inicialmente;

indice del local:
$$k = \frac{3 \text{ m} \cdot 5 \text{ m}}{2,35 \text{ m} \cdot (3 \text{ m} + 5 \text{ m})} = 0,79$$

Con los coeficientes de reflexión y el factor K obtenemos de tabla 20-4 el rendimiento del local

$$\eta_{R} = 0.87$$

La luminaria elegida es la Luminaria TBS318 C con una lámpara 2 X TL-D 36W/840 seleccionada del catálogo Phillips, cuyo rendimiento es de η_L =0,71 y un flujo luminoso El nivel de iluminación media a lograr es Em = 500 lux.

Entonces el flujo total necesario es;

$$\phi_T = \frac{E_m * S}{\eta * f_c}$$

$$\phi_T = \frac{500 \text{ lux*}3\text{m*}5\text{m}}{0.81*0.87*0.65} = 16373,6 \text{ lúmenes}$$

Por lo que la cantidad de luminarias a instalar

$$N = \frac{\phi_T}{\phi_I} = \frac{16373,61\text{úmenes}}{30151\text{úmenes}} = 5,43 \Rightarrow 61\text{ámparas}$$

Como esta luminaria tiene alojamiento para dos lámparas, el total de Luminarias a instalar será de 3 Luminaria.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 86 de 163

Mediante la herramienta Dialux y conociendo las dimensiones del recinto a iluminar, se verifica el valor de iluminancia media indicada anteriormente por norma instalando la cantidad de luminarias previamente calculadas. (Ver anexo IV)

6.7.8. Numero de luminarias a utilizar

Mediante un minucioso cálculo y una posterior verificación mediante el software Dialux se obtiene el total de luminarias a utilizar, la siguiente tabla detalla las cantidades en cada sector: (Ver anexo IV)

Sector	N° de
	Luminarias
1	8
2	8
3	4
4	4
5	1
6	4
7	4
8	3

7. Instalación eléctrica

Para poder realizar el cálculo de los circuitos eléctricos de toda la planta, los dividimos en:

- ✓ Circuitos de iluminación
- ✓ Circuitos para tomacorriente y fuerza motriz

Para la correcta selección de los conductores, deberán considerarse los siguientes puntos:

- Definir la tensión nominal del cable, ésta debe ser apropiada para las condiciones de operación de la red en la que el cable va a ser instalado.
- Determinar la corriente de proyecto, ésta es la corriente máxima permanente considerando las potencias nominales de las cargas.
- Escoger el tipo de conductor y la forma de instalación.
- Determinar la sección por el criterio de capacidad de conducción de corriente.
- Verificar la sección por el criterio de corriente de cortocircuito, con esto se verifica la viabilidad de la sección calculada de acuerdo a las secciones admisibles en cortocircuito.
- Verificar la sección por el criterio de caída de tensión: la caída de tensión se origina debido a que el conductor opone una resistencia al pasaje de la corriente dependiendo del material, la longitud y la sección del mismo. La caída

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 87 de 163

de tensión se determinará considerando alimentados todos los aparatos susceptibles de funcionar simultáneamente.

• Verificar el cumplimiento de las secciones mínimas.

Creamos una planilla de Microsoft Excel, para realizar el cálculo de las secciones de todos los conductores de la planta.

Para poder ver todos los circuitos que tendrá la planta, ver los planos eléctricos. (Anexo I, PLE01- PLE02)

				DOD	TENSION DE NA ÓVIDA	LONGITUD MÁXIMA	ÁVIDA G SECCION	RESISTENCIA		CAÍDA DE TENSIÓN	CAÍDA DE TENSIÓN MÁXIMA		
TAG	DESTINO	0	\wedge	AM	CIRCUITO (A)		APROX. EN PLANTA (m)	(mm/)	ELECTRICA MÁXIMA (Ω/km)	COSFI	DEL CIRCUITO (%)	MAXIMA ADMISIBLE (%)	RESULTADO
	TABLERO GENERAL					· ·							
TG-C1	ILUMINACIÓN OFICINA	3			2,64	220	8,40	2x1,5+PE	13,3	0,8	0,21	3,00	VERIFICA
TG-C2	ILUMINACIÓN ZONA LAMINADO	4			3,52	220	21,00	2x1,5+PE	13,3	0,8	0,72	3,00	VERIFICA
TG-C3	ILUMINACIÓN ZONA CURADO	2			1,76	220	24,75	2x1,5+PE	13,3	0,8	0,42	3,00	VERIFICA
TG-C4	ILUMINACIÓN ZONA PRETERMINACIÓN	4			3,52	220	32,30	2x1,5+PE	13,3	0,8	1,10	3,00	VERIFICA
TG-C5	ILUMINACIÓN NAVE 1A	4			15,4	220	35,85	2x4+PE	4,95	0,8	1,99	3,00	VERIFICA
TG-C6	ILUMINACIÓN NAVE 1B	4			15,4	220	35,85	2x4+PE	4,95	0,8	1,99	3,00	VERIFICA
TG-C7	ILUMINACIÓN NAVE 2A	4			15,4	220	35,85	2x4+PE	4,95	0,8	1,99	3,00	VERIFICA
TG-C8	ILUMINACIÓN NAVE 2B	4			15,4	220	35,85	2x4+PE	4,95	0,8	1,99	3,00	VERIFICA
TG-T1	TOMACORRIENTES OFICINA		4		10	220	11,00	2x2,5+PE	7,98	0,8	0,64	3,00	VERIFICA
TG-T2	TOMACORRIENTES NAVE 1B			4	16	380	28,00	4x2,5+PE	9,55	0,8	1,56	3,00	VERIFICA
TG-T3	TOMACORRIENTES NAVE 2A			3	16	380	26,00	4x2,5+PE	9,55	0,8	1,45	3,00	VERIFICA
TG-TS1	RAMAL ALIMENTADOR TS1	-	-	-	43,85	380	28,50	4x10+PE	1,45	0,8	0,66	1,00	VERIFICA
TG-TS2	RAMAL ALIMENTADOR TS2	-	-	-	40,97	380	33,35	4x10+PE	1,45	0,8	0,72	1,00	VERIFICA
	TABLERO SECCIONAL 1												
TS1-C1	ILUMINACIÓN CABINA DE PINTURA	4			3,52	220	9,00	2x1,5+PE	13,3	0,8	0,31	2,00	VERIFICA
TS1-T1	TOMACORRIENTES NAVE 1A			2	16	380	12,00	4x2,5+PE	9,55	0,8	0,48	2,00	VERIFICA
TS1-T2	TOMACORRIENTES CABINA DE PINTURA			1	16	380	10,50	4x2,5+PE	9,55	0,8	0,42	2,00	VERIFICA
TS1-FM	COMPRESOR NAVE 1	-	-	-	8,33	380	6,00	4x2,5+PE	9,55	0,8	0,13	2,00	VERIFICA
	TABLERO SECCIONAL 2												
TS 2-C1	ILUMINACIÓN BAÑOS Y CAMBIADORES	1			0,64	220	6,00	2x1,5+PE	13,3	0,8	0,04	2,00	VERIFICA
TS 2-T1	TOMACORRIENTES BAÑOS Y CAMBIADORES		4		16	220	15,00	2x2,5+PE	9,55	0,8	1,04	2,00	VERIFICA
TS 2-T2	TOMACORRIENTES NAVE 2B			3	16	380	17,00	4x2,5+PE	9,55	0,8	0,68	2,00	VERIFICA
TS2-FM	COMPRESOR NAVE 2	-	-	-	8,33	380	12,00	4x2,5+PE	9,55	0,8	0,25	2,00	VERIFICA

(Ver anexo III, circuitos eléctricos)

7.1. Cálculo y sección de los conductores de iluminación

7.1.1. Calculo del circuito de iluminación de la nave 1 y nave 2

Para el circuito de iluminación de la nave 1 y 2, se realizara por medio de cuatro circuitos independientes, la conexión de los diferentes circuitos se realizara entre las distintas fases de la red de distribución, ya que se dispone de red trifásica, de esta forma antes la falta de una fase se consigue tener luz en las restantes fases.

Los cuatro circuitos independientes se conformaron con la idea de tener una iluminación más sectorizada. Con solo prender algunos de ellos se logra iluminar todo el recinto de esa zona de la línea de producción. Con lo cual los circuitos independientes están formados de la siguiente manera:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 88 de 163

El circuito 1 está formado por las luminarias

> Luminaria: 1, 3, 5, 7

El circuito 2 está formado por las luminarias

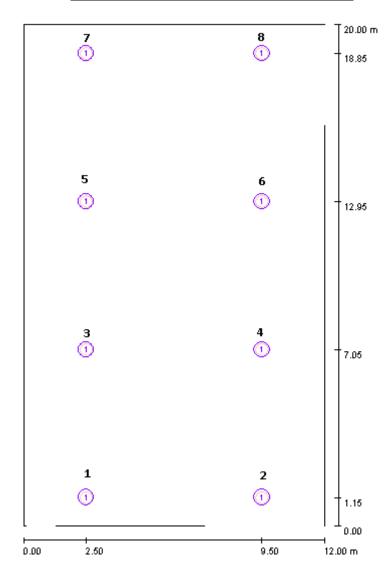
> Luminaria: 2, 4, 6, 8

El circuito 3 está formado por las luminarias

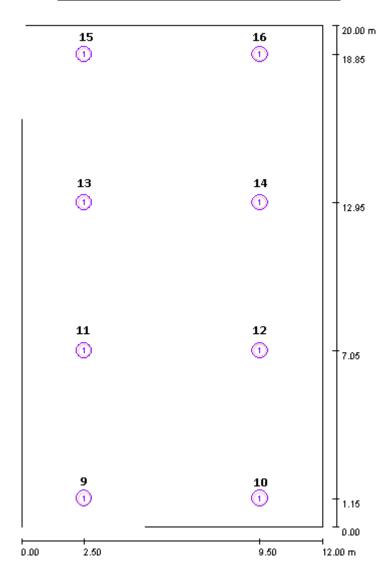
Luminaria: 9, 11, 13, 15

El circuito 4 está formado por las luminarias

Luminaria: 10, 12, 14, 16


Se puede ver una vista en planta de la distribución de los distintos tableros sobre la nave con su respectiva identificación, y la distribución de las luminarias en toda la nave industrial-

Ver anexo I, Plano N°: PLG01


N°: PLE01 N°: PLE02

De acuerdo a disposición arrojada por el programa Dialux tenemos que las siguientes distancias y distribución de cada luminaria es la siguiente:

Distribución de las luminarias para la nave1

Distribución de las luminarias para la nave2

Partimos de considerar que el tablero de iluminación se colocara junto con el tablero general, es por ello que si observamos las anteriores vistas en planta de la nave industrial vemos que según la ubicación de las luminarias y del tablero general, se observar que el circuito con mayor extensión respecto al tablero General es el **circuito** 4 y por lo tanto el que produce mayor caída de tención.

Ahora podemos ver una vista aproximada en planta del *circuito 4*, y una tabla con las distancias de las luminarias al tablero. Consideramos una distancia de 3metros desde las bandejas porta cable hasta el tablero principal.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 91 de 163

	Luminaria 1	Luminaria 3	Luminaria 9	Luminaria 11
	[L ₁₀]	[L ₁₂]	[L ₁₄]	[L ₁₆]
Distancia desde el tablero [m]	18,15	24,05	29,95	35,85

Selección de los conductores

Considerando las características de nuestra instalación seleccionamos del catálogo de PRYSMIAN, el conductor SUPERASTIC FLEX, ya que está indicado para instalaciones de iluminación y distribución de energía en el interior de edificios civiles e industriales, en circuitos primarios, secundarios y derivaciones.

Este conductor seleccionado tiene las siguientes características:

Metal: Cobre electrolítico recocido.

Flexibilidad: clase 5; según IRAM NM-280 e IEC 60228.

Temperatura máxima en el conductor: 70º C en servicio continuo, 160º C en cortocircuito.

Además su aislante es de PVC ecológico.

Para adoptar la sección del conductor del circuito de iluminación consideramos la corriente que circulara por los mismos.

Considerando que cada luminaria consumirá:

$$i_{lumi} = i_{lamp} = 3.85A$$

Siendo que cada circuito independiente está formado por cuatro luminarias la corriente total que circulara por cada circuito serán las mismas y su valor es:

$$i_{C1} = i_{C2} = i_{C3} = i_{C4} = 4.3,85A = 15,4A$$

Si observamos a continuación el catalogo de cable de PRYSMIAN, podemos ver con un cable de una sección de 2.5 mm² ya es suficiente; dado que la corriente admisible por el conductor es mayor a la intensidad requerida por cada circuito.

$$i_{adm-conductor} > i_{C1} = i_{C2} = i_{C3} = i_{C4}$$

 $18A > 15, 4A$

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 92 de 163

Sección nominal	Diámetro máx. de alam- bres del con- ductor	Espesor de aislación nominal	Diámetro exterior aprox.	Masa aprox.	Intensidad de corriente admisible en cañerías (3)		Caída de tensión (4)	Resistencia Eléctrica máxima a 20°C y c.c.
mm²	mm	mm	mm	kg/km	⊖ (1) A	(2) A	V/A km	ohm/km
0,75	0,21	0,6	2,3	11	9	8	50	26
1,0	0,21	0,6	2,5	15	11,5	10,5	37	19,5
1,5	0,26	0,7	3,0	20	15	13	26	13,3
2,5	0,26	0,8	3,6	31	21	18	15	7,98
4	0,31	0,8	4,1	45	28	25	10	4,95
6	0,31	0,8	4,7	63	36	32	6,5	3,30
10	0,41	1,0	6,0	107	50	44	3,8	1,91
16	0,41	1,0	7,0	167	66	59	2,4	1,21
25	0,41	1,2	9,6	268	88	77	1,54	0,78
35	0,41	1,2	10,8	361	109	96	1,20	0,554
50	0,41	1,4	12,8	511	131	117	0,83	0,386
70	0,51	1,4	14,6	698	167	149	0,61	0,272
95	0,51	1,6	16,8	899	202	180	0,48	0,206
120	0,51	1,6	19,7	1175	234	208	0,39	0,161

Además las luminarias estarán conectadas con un conductor de puesta a tierra de una sección de 2,5mm² como se solicita en la tabla anterior.

Verificación por intensidad

Como vimos anteriormente la corriente admisible del conductor es mayor que el de las lámparas.

$$i_{adm-conductor} > i_{C1} = i_{C2} = i_{C3} = i_{C4}$$

 $18A > 15, 4A$

Verificación de la caída de tensión

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero principal y cualquier punto de utilización no debe superar para circuitos de iluminación el 3%.

Como se dijo anteriormente el circuito N°4 es el que tiene mayor longitud, y por lo tanto más caída de tensión y siendo todos conductores de igual sección nominal se realizara el cálculo sobre este que es el más desfavorable:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 93 de 163

La caída de tensión para circuito monofásico vendrá dada por:

$$\begin{split} &\Delta V \left[\%\right]_{Circuito} = 2.\frac{\rho}{S}.\frac{i_{total} \, \phi.l_{\max{ima}}}{V}.100\% \\ &\Delta V \left[\%\right]_{Circuito} = 2.r.\frac{i_{total} \, \phi.l_{\max{ima}}}{V}.100\% \end{split}$$

Siendo

I_{total}= la corriente total que circula por el circuito

I_{maxima}= la distancia más alejada de la luminaria al tablero

V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

Caída de tensión: Circuito 4

$$\begin{split} & \Delta V_1 \big[\%\big] = 2 \cdot 7,98 \frac{\Omega}{Km} \cdot \frac{l_{\text{max ima}} \cdot i_{\text{total}} \cdot \cos \phi}{220V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = 2 \cdot 7,98 \frac{\Omega}{Km} \cdot \frac{(35,85m.15,4A.0,8) \cdot 10^{-3} \ \frac{Km}{m} \cdot A}{220V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = 3,2\% \Rightarrow noverifica \end{split}$$

A este valor obtenido es mayor al 3%.

Por ello seleccionamos un cable de 4mm sección y nos queda:

Caída de tensión: Circuito 4

$$\Delta V_{1}[\%] = 2 \cdot 4,95 \frac{\Omega}{Km} \cdot \frac{l_{\text{max.ima}} \cdot i_{\text{total}} \cdot \cos \phi}{220V} \cdot 100\%$$

$$\Delta V_{1}[\%] = 2 \cdot 4,95 \frac{\Omega}{Km} \cdot \frac{(35,85m.15,4A.0,8) \cdot 10^{-3} \frac{Km}{m} \cdot A}{220V} \cdot 100\%$$

$$\Delta V_{1}[\%] = 1,98\% \Rightarrow verifica$$

A este valor obtenido es menor al 3%.

7.1.2. Calculo del circuito de iluminación de la Cabina de Laminado

Para el circuito de iluminación de la Cabina de Laminado, se realizara por medio de un solo circuito independiente conectado a una fase de la red.

De acuerdo a disposición arrojada por el programa Dialux tenemos que las siguientes distancias y distribución de cada luminaria es la siguiente:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 94 de 163

2 4 1 3.00

cabina de Laminado / Luminarias (ubicación)

0.00

5.00 m

Según la ubicación de las luminarias, del tablero seccional, y de la configuración adopta para el circuito podemos armar un cuadro con la extensión del mismo, y así calcular la caída de tención.

3.75

Consideramos una distancia de 3metros desde las bandejas porta cable hasta el tablero principal, Circuito Único;

Ver anexo I, Plano N°: PLE01

0.00

N°: PLE02

1.25

	Luminaria1	Luminaria3	Luminaria3
	[L ₁]	[L ₂]	[L ₃]
Distancia desde el tablero [m]	16.5	19	21

Selección de los conductores

Considerando las características de nuestra instalación seleccionamos del catálogo de PRYSMIAN, el conductor SUPERASTIC FLEX, ya que está indicado para instalaciones de iluminación y distribución de energía en el interior de edificios civiles e industriales, en circuitos primarios, secundarios y derivaciones.

Este conductor seleccionado tiene iguales características que el anterior.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 95 de 163

Para adoptar la sección del conductor consideramos la corriente que circulara por el mismo.

Considerando que cada luminaria consumirá:

$$i_{lumi} = 2.i_{lamp} = 2.0,44A = 0,88A$$

Siendo que el circuito independiente está formado por cuatro luminarias la corriente total que circulara por el mismo es:

$$i_C = 4.0,88A = 3,52A$$

Si observamos a continuación el catalogo de cable de PRYSMIAN, podemos ver con un cable de una sección de 0,75 mm² ya es suficiente; dado que la corriente admisible por el conductor es mayor a la intensidad requerida por cada circuito.

$$i_{adm-conductor} > i_C$$

 $8A > 3,52A$

Sección nominal	Diámetro máx. de alam- bres del con- ductor	Espesor de aislación nominal	Diámetro exterior aprox.	Masa aprox.	Intensidad de corriente admisible en cañerías (3)		Caída de tensión (4)	Resistencia Eléctrica máxima a 20°C y c.c.
mm²	mm	mm	mm	kg/km	(1) A	(2) A	V/A km	ohm/km
0,75	0,21	0,6	2,3	11	9	8	50	26
1,0	0,21	0,6	2,5	15	11,5	10,5	37	19,5
1,5	0,26	0,7	3,0	20	15	13	26	13,3
2,5	0,26	0,8	3,6	31	21	18	15	7,98
4	0,31	0,8	4,1	45	28	25	10	4,95
6	0,31	0,8	4,7	63	36	32	6,5	3,30
10	0,41	1,0	6,0	107	50	44	3,8	1,91
16	0,41	1,0	7,0	167	66	59	2,4	1,21
25	0,41	1,2	9,6	268	88	77	1,54	0,78
35	0,41	1,2	10,8	361	109	96	1,20	0,554
50	0,41	1,4	12,8	511	131	117	0,83	0,386
70	0,51	1,4	14,6	698	167	149	0,61	0,272
95	0,51	1,6	16,8	899	202	180	0,48	0,206
120	0,51	1,6	19,7	1175	234	208	0,39	0,161

Pero según Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina establece la sección mínima, para conductores de circuito de iluminación, de 1,5mm² de acuerdo a la TABLA 771.13.I. del apartado 771.13. (Se adjunta tabla)

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 96 de 163

Tabla 771.13.I - Secciones mínimas de conductores

Líneas principales	4,00 mm ²
Circuitos seccionales	2,50 mm ²
Circuitos terminales para iluminación de usos generales (con co- nexión fija o a través de tomacorrientes)	1,50 mm ²
Circuitos terminales para tomacorrientes de usos generales	2,50 mm ²
Circuitos terminales para iluminación de usos generales que inclu- yen tomacorrientes de usos generales	2,50 mm ²
Líneas de circuito para usos especiales	2,50 mm ²
Líneas de circuito para uso específico (excepto MBTF)	2,50 mm ²
Líneas de circuito para uso específico (alimentación a MBTF)	1,50 mm ²
Alimentaciones a interruptores de efecto	1,50 mm²
Retornos de los interruptores de efecto	1,50 mm ²
Conductor de protección	2,50 mm²

Además las luminarias estarán conectadas con un conductor de puesta a tierra de una sección de 2,5mm² como se solicita en la tabla anterior.

Por lo tanto adoptamos del catalogo de PRYSMIAN, el cable de 1,5 mm² de sección, que pasamos a verificarlo por intensidad de corriente y por caída de tensión.

Sección nominal	Diámetro máx. de alam- bres del con- ductor	Espesor de aislación nominal	Diámetro exterior aprox.	Masa aprox.		d de corriente en cañerías (3)	Caída de tensión (4)	Resistencia Eléctrica máxima a 20°C y c.c.
mm²	mm	mm	mm	kg/km	(1) A	(2) A	V/A km	ohm/km
0,75	0,21	0,6	2,3	11	9	8	50	26
1,0	0,21	0,6	2,5	15	11,5	10,5	37	19,5
1,5	0,26	0,7	3,0	20	15	13	26	13,3
2,5	0,26	0,8	3,6	31	21	18	15	7,98
4	0,31	0,8	4,1	45	28	25	10	4,95
6	0,31	0,8	4,7	63	36	32	6,5	3,30
10	0,41	1,0	6,0	107	50	44	3,8	1,91
16	0,41	1,0	7,0	167	66	59	2,4	1,21
25	0,41	1,2	9,6	268	88	77	1,54	0,78
35	0,41	1,2	10,8	361	109	96	1,20	0,554
50	0,41	1,4	12,8	511	131	117	0,83	0,386
70	0,51	1,4	14,6	698	167	149	0,61	0,272
95	0,51	1,6	16,8	899	202	180	0,48	0,206
120	0,51	1,6	19,7	1175	234	208	0,39	0,161

Verificación por intensidad

Como ya vimos anteriormente que para un cable de mucho menor diámetro ya verificaba con lo cual para este, lo hará con mayor holgura; debido a que admite una mayor corriente nos queda que:

$$i_{adm-conductor} > i_{C}$$

13A > 3,52A

Verificación de la caída de tensión

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 97 de 163

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero principal y cualquier punto de utilización no debe superar para circuitos de iluminación el 3%.

Por la tanto calculamos la caída de tensión para circuito monofásico, la cual vendrá dada por:

$$\Delta V \left[\%\right]_{Circuito} = 2.\frac{\rho}{S}.\frac{i_{total} \phi.l_{\max ima}}{V}.100\%$$

$$\Delta V \left[\%\right]_{Circuito} = 2.r.\frac{i_{total} \phi.l_{\max ima}}{V}.100\%$$

Siendo

i_{total}= Corriente total que circula por el circuito

I_{maxima}= Distancia más alejada de la luminaria al tablero

V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

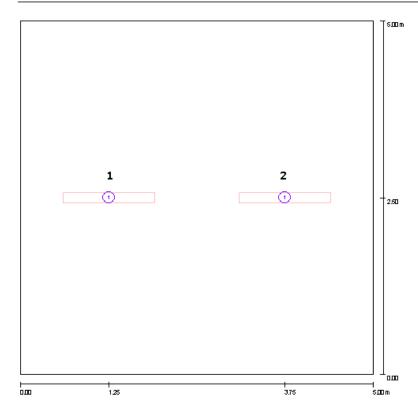
Caída de tensión: Circuito único

$$\Delta V_{1}[\%] = 2 \cdot 13,3 \frac{\Omega}{Km} \cdot \frac{l_{\text{max } ima} \cdot i_{\text{total}} \cdot \cos \phi}{220V} \cdot 100\%$$

$$\Delta V_{1}[\%] = 2 \cdot 13,3 \frac{\Omega}{Km} \cdot \frac{(21m.3,52A.0,8) \cdot 10^{-3} \frac{Km}{m} \cdot A}{220V} \cdot 100\%$$

$$\Delta V_{1}[\%] = 0,72\% \Rightarrow verifica$$

A este valor obtenido se lo sumará a la caída de tensión de la línea seccional que se calculará luego, para verificar que sea menor al 3%.


7.1.3. Calculo del circuito de iluminación de la Cabina de Curado

Para el circuito de iluminación de la Cabina de Curado, se realizara por medio de un solo circuito independiente conectado a una fase de la red.

De acuerdo a disposición arrojada por el programa Dialux tenemos que las siguientes distancias y distribución de cada luminaria es la siguiente:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 98 de 163

Cabina de curado / Luminarias (ubicación)

Según la ubicación de las luminarias, del tablero seccional, y de la configuración adopta para el circuito podemos armar un cuadro con la extensión del mismo, y así calcular la caída de tención.

Consideramos una distancia de 3metros desde las bandejas porta cable hasta el tablero principal, Circuito Único;

Ver anexo I, Plano N°: PLE01

N°: PLE02

	Luminaria1	Luminaria2
	[L ₁]	[L ₂]
Distancia desde el tablero [m]	22,25	24,75

Selección de los conductores

Considerando las características de nuestra instalación seleccionamos del catálogo de PRYSMIAN, el conductor SUPERASTIC FLEX, igual al anteriormente seleccionado.

Para adoptar la sección del conductor del circuito de iluminación consideramos la corriente que circulara por los mismos.

Considerando que cada luminaria consumirá:

$$i_{lumi} = 2.i_{lamp} = 2.0,44A = 0,88A$$

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 99 de 163

Siendo que el circuito independiente está formado por cuatro luminarias la corriente total que circulara por el mismo es:

$$i_C = 2.0,88A = 1,76A$$

Si observamos a continuación el catalogo de cable de PRYSMIAN, podemos ver con un cable de una sección de 0,75 mm² ya es suficiente; dado que la corriente admisible por el conductor es mayor a la intensidad requerida por cada circuito.

$$i_{adm-conductor} > i_C$$

 $8A > 1,76A$

Pero como se vio anteriormente según Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina establece la sección mínima, para conductores de circuito de iluminación, de 1,5mm² de acuerdo a la TABLA 771.13.I. del apartado 771.13.

Además las luminarias estarán conectadas con un conductor de puesta a tierra de una sección de 2,5mm² como se solicita en la tabla anterior.

Por lo tanto adoptamos del catalogo de PRYSMIAN, el cable de 1,5 mm² de sección, igual al anteriormente adoptado, que pasamos a verificarlo por intensidad de corriente y por caída de tensión.

Verificación por intensidad

Por lo que nos queda:

$$i_{adm-conductor} > i_C$$

 $13A > 1,76A$

Verificación de la caída de tensión

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero principal y cualquier punto de utilización no debe superar para circuitos de iluminación el 3%.

Por la tanto calculamos la caída de tensión para circuito monofásico, la cual vendrá dada por:

$$\begin{split} &\Delta V \left[\%\right]_{Circuito} = 2.\frac{\rho}{S}.\frac{i_{total} \, \phi.l_{\max{ima}}}{V}.100\% \\ &\Delta V \left[\%\right]_{Circuito} = 2.r.\frac{i_{total} \, \phi.l_{\max{ima}}}{V}.100\% \end{split}$$

Siendo

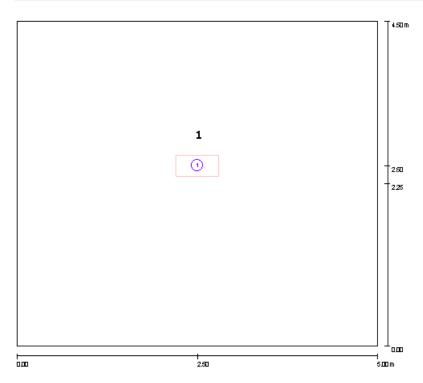
i_{total}= la corriente total que circula por el circuito

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 100 de 163

 I_{maxima} = la distancia más alejada de la luminaria al tablero V=tensión de servicio r = resistencia eléctrica máxima a 20C° y cc.

Caída de tensión: Circuito único

$$\begin{split} & \Delta V_1 \big[\%\big] = 2 \cdot 13,3 \frac{\Omega}{Km} \cdot \frac{l_{\text{max}ima} \cdot i_{\text{total}} \cdot \cos \phi}{220V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = 2 \cdot 13,3 \frac{\Omega}{Km} \cdot \frac{(24,75m.1,76A.0,8) \cdot 10^{-3} \ Km / m \cdot A}{220V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = 0,42\% \Rightarrow verifica \end{split}$$


A este valor obtenido se lo sumará a la caída de tensión de la línea seccional que se calculará luego, para verificar que sea menor al 3%.

7.1.4. Calculo del circuito de iluminación de baño y vestuarios

Para el circuito de iluminación de los baños y vestuarios, se realizara por medio de un solo circuito independiente conectado a una fase de la red.

De acuerdo a disposición arrojada por el programa Dialux tenemos que las siguientes distancias y distribución de cada luminaria es la siguiente:

Baño y vestuarios / Luminarias (ubicación)

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 101 de 163

Según la ubicación de la luminaria, del tablero seccional, y de la configuración adopta para el circuito podemos armar un cuadro con la extensión del mismo, y así calcular la caída de tención.

Consideramos una distancia de 3metros desde las bandejas porta cable hasta el tablero seccional, Circuito Único;

Ver anexo I, Plano N°: PLE01 N°: PLE02

	Luminaria1
	$[L_1]$
Distancia desde el tablero	6
[m]	U

Selección de los conductores

Considerando las características de nuestra instalación seleccionamos del catálogo de PRYSMIAN, el conductor SUPERASTIC FLEX, al igual que los anteriores.

Para adoptar la sección del conductor del circuito de iluminación consideramos la corriente que circulara por los mismos.

Considerando que cada luminaria consumirá:

$$i_{lumi} = 2.i_{lamp} = 2.0,32A = 0,64A$$

Siendo que el circuito independiente está formado por una luminaria la corriente total que circulara por el mismo es:

$$i_C = 0,64A = 0.64A$$

Si observamos en la figura anterior del catalogo de cable de PRYSMIAN, podemos ver con un cable de una sección de 0,75 mm² ya es suficiente; dado que la corriente admisible por el conductor es mayor a la intensidad requerida por cada circuito.

Pero según Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina establece la sección mínima, para conductores de circuito de iluminación, de 1,5mm² de acuerdo a la TABLA 771.13.I. del apartado 771.13. (Ver tabla anterior)

Además la luminaria estará conectada con un conductor de puesta a tierra de una sección de 2,5mm² como se solicita en la tabla anterior.

Por lo tanto adoptamos del catalogo de PRYSMIAN, el cable de 1,5 mm² de sección, al igual que los casos anteriores, que pasamos a verificarlo por intensidad de corriente y por caída de tensión.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 102 de 163

Verificación por intensidad

Nos queda:

$$i_{adm-conductor} > i_C$$

Verificación de la caída de tensión

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero seccional y cualquier punto de utilización no debe superar para circuitos de iluminación el 2%.

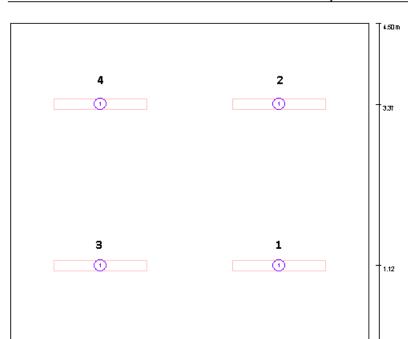
Por la tanto calculamos la caída de tensión para circuito monofásico, la cual vendrá dada por la anterior formula vista nos queda:

Caída de tensión: Circuito único

$$\Delta V_2[\%] = 2.13,3 \frac{\Omega}{Km} \cdot \frac{l_1 \cdot i \cdot \cos \phi}{220V} \cdot 100\%$$

$$\Delta V_2 [\%] = 2.13, 3 \frac{\Omega}{Km} \cdot \frac{(6m \cdot 0, 64A.0, 8) \cdot 10^{-3} \frac{Km}{m} \cdot A}{220V} \cdot 100\%$$

$$\Delta V_2 [\%] = 0.04\%$$


Se verificar ya que es menor al 2%.

7.1.5. Calculo del circuito de iluminación de la Cabina de Pre terminación

Para el circuito de iluminación de la Cabina de Pre terminación, se realizara por medio de un solo circuito independiente conectado a una fase de la red.

De acuerdo a disposición arrojada por el programa Dialux tenemos que las siguientes distancias y distribución de cada luminaria es la siguiente:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 103 de 163

Cabina de preterminación / Luminarias (ubicación)

Según la ubicación de las luminarias, del tablero general, y de la configuración adopta para el circuito podemos armar un cuadro con la extensión del mismo, y así calcular la caída de tención.

1 5000 m

Consideramos una distancia de 3metros desde las bandejas porta cable hasta el tablero general.

Ver anexo I, Plano N°: PLE01 N°: PLE02

	Luminaria1	Luminaria2	Luminaria3
	[L ₁]	$[L_2]$	[L ₃]
Distancia desde el tablero [m]	28.2	29.5	32.3

Selección de los conductores

Considerando las características de nuestra instalación seleccionamos del catálogo de PRYSMIAN, el conductor SUPERASTIC FLEX, al igual que los anteriores.

Para adoptar la sección del conductor del circuito de iluminación consideramos la corriente que circulara por los mismos.

Considerando que cada luminaria consumirá:

$$i_{lumi} = 2.i_{lamp} = 2.0,44A = 0,88A$$

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 104 de 163

Siendo que el circuito independiente está formado por cuatro luminarias la corriente total que circulara por el mismo es:

$$i_C = 4.0,88A = 3,52A$$

Si observamos en la figura anterior del catalogo de cable de PRYSMIAN, podemos ver con un cable de una sección de 0,75 mm² ya es suficiente; dado que la corriente admisible por el conductor es mayor a la intensidad requerida por cada circuito.

Pero según Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina establece la sección mínima, para conductores de circuito de iluminación, de 1,5mm² de acuerdo a la TABLA 771.13.I. del apartado 771.13. (Ver tabla anterior)

Además la luminaria estará conectada con un conductor de puesta a tierra de una sección de 2,5mm² como se solicita en la tabla anterior.

Por lo tanto adoptamos del catalogo de PRYSMIAN, el cable de 1,5 mm² de sección, al igual que los casos anteriores, que pasamos a verificarlo por intensidad de corriente y por caída de tensión.

Verificación por intensidad

Nos queda que:

$$i_{adm-conductor} > i_C$$

 $13A > 3,52A$

Verificación de la caída de tensión

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero general y cualquier punto de utilización no debe superar para circuitos de iluminación el 3%.

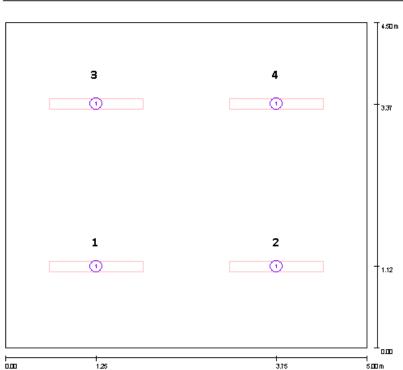
Por la tanto calculamos la caída de tensión para circuito monofásico, la cual vendrá dado por la anterior formula vista, nos queda:

Caída de tensión: Circuito único

$$\Delta V_{1}[\%] = 2 \cdot 13.3 \frac{\Omega}{Km} \cdot \frac{l_{\max ima} \cdot i_{total} \cdot \cos \phi}{220V} \cdot 100\%$$

$$\Delta V_{1}[\%] = 2 \cdot 13.3 \frac{\Omega}{Km} \cdot \frac{(32.3m.3.52A.0.8) \cdot 10^{-3} \frac{Km}{m} \cdot A}{220V} \cdot 100\%$$

$$\Delta V_{1}[\%] = 1.1\% \Rightarrow verifica$$


Se verificar ya que es menor al 3%.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 105 de 163

7.1.6. Calculo del circuito de iluminación de la Cabina de Pintado

Para el circuito de iluminación de la Cabina de Pintado, se realizara por medio de un solo circuito independiente conectado a una fase de la red.

De acuerdo a disposición arrojada por el programa Dialux tenemos que las siguientes distancias y distribución de cada luminaria es la siguiente:

cabina de Pintura / Luminarias (ubicación)

Según la ubicación de las luminarias, del tablero seccional, y de la configuración adopta para el circuito podemos armar un cuadro con la extensión del mismo, y así calcular la caída de tención.

Consideramos una distancia de 3metros desde las bandejas porta cable hasta el tablero principal, Circuito Único;

Ver anexo I, Plano N°: PLE01

N°: PLE02

	Luminaria1 $[L_1]$	Luminaria3 $[L_3]$	Luminaria4 [L ₄]
Distancia desde el tablero [m]	4,25	6,5	9

Selección de los conductores

Considerando las características de nuestra instalación seleccionamos del catálogo de PRYSMIAN, el conductor SUPERASTIC FLEX, al igual que los casos anteriores.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 106 de 163

Para adoptar la sección del conductor del circuito de iluminación consideramos la corriente que circulara por los mismos.

Considerando que cada luminaria consumirá:

$$i_{lumi} = 2.i_{lamp} = 2.0,44A = 0,88A$$

Siendo que el circuito independiente está formado por cuatro luminarias la corriente total que circulara por el mismo es:

$$i_C = 4.0,88A = 3,52A$$

Si observamos en la figura anterior del catalogo de cable de PRYSMIAN, podemos ver con un cable de una sección de 0,75 mm² ya es suficiente; dado que la corriente admisible por el conductor es mayor a la intensidad requerida por cada circuito.

Pero según Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina establece la sección mínima, para conductores de circuito de iluminación, de 1,5mm² de acuerdo a la TABLA 771.13.I. del apartado 771.13. (Ver tabla anterior)

Además la luminaria estará conectada con un conductor de puesta a tierra de una sección de 2,5mm² como se solicita en la tabla anterior.

Por lo tanto adoptamos del catalogo de PRYSMIAN, el cable de 1,5 mm² de sección, al igual que los casos anteriores, que pasamos a verificarlo por intensidad de corriente y por caída de tensión.

Verificación por intensidad

Queda que:

 $i_{adm-conductor} > i_C$

13A > 3,52A

Verificación de la caída de tensión

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero seccional y cualquier punto de utilización no debe superar para circuitos de iluminación el 2%.

Por la tanto calculamos la caída de tensión para circuito monofásico, la cual vendrá dada por:

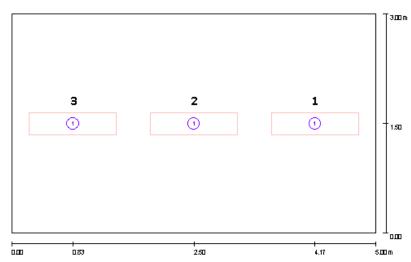
Caída de tensión: Circuito único

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 107 de 163

$$\Delta V_{1}[\%] = 2 \cdot 13,3 \frac{\Omega}{Km} \cdot \frac{l_{\max ima} \cdot i_{total} \cdot \cos \phi}{220V} \cdot 100\%$$

$$\Delta V_{1}[\%] = 2 \cdot 13,3 \frac{\Omega}{Km} \cdot \frac{(9m.3,52A.0,8) \cdot 10^{-3} \frac{Km}{m} \cdot A}{220V} \cdot 100\%$$

$$\Delta V_{1}[\%] = 0,31\% \Rightarrow verifica$$


A este valor obtenido se lo sumará a la caída de tensión de la línea seccional que se calculará luego, para verificar que sea menor al 2%.

7.1.7. Calculo del circuito de iluminación de la oficina

Para el circuito de iluminación de la oficina, se realizara por medio de un solo circuito independiente conectado a una fase de la red.

De acuerdo a disposición arrojada por el programa Dialux tenemos que las siguientes distancias y distribución de cada luminaria es la siguiente:

Oficina / Luminarias (ubicación)

Según la ubicación de las luminarias, del tablero principal, y de la configuración adopta para el circuito podemos armar un cuadro con la extensión del mismo, y así calcular la caída de tención.

Consideramos una distancia de 3metros desde las bandejas porta cable hasta el tablero principal, Circuito Único;

Ver anexo I, Plano N°: PLE01

N°: PLE02

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 108 de 163

	Luminaria1	Luminaria2	Luminaria3
	$[L_1]$	$[L_2]$	[L ₃]
Distancia desde el tablero [m]	5	6,7	8,4

Selección de los conductores

Considerando las características de nuestra instalación seleccionamos del catálogo de PRYSMIAN, el conductor SUPERASTIC FLEX, al igual que los casos anteriores.

Para adoptar la sección del conductor del circuito de iluminación consideramos la corriente que circulara por los mismos.

Considerando que cada luminaria consumirá:

$$i_{lumi} = 2.i_{lamp} = 2.0,44A = 0,88A$$

Siendo que el circuito independiente está formado por dos luminarias la corriente total que circulara por el mismo es:

$$i_C = 3.0,88A = 2,64A$$

Si observamos en la figura anterior del catalogo de cable de PRYSMIAN, podemos ver con un cable de una sección de 0,75 mm² ya es suficiente; dado que la corriente admisible por el conductor es mayor a la intensidad requerida por cada circuito.

Pero según Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina establece la sección mínima, para conductores de circuito de iluminación, de 1,5mm² de acuerdo a la TABLA 771.13.I. del apartado 771.13. (Ver tabla anterior)

Además la luminaria estará conectada con un conductor de puesta a tierra de una sección de 2,5mm² como se solicita en la tabla anterior.

Por lo tanto adoptamos del catalogo de PRYSMIAN, el cable de 1,5 mm² de sección, al igual que los casos anteriores, que pasamos a verificarlo por intensidad de corriente y por caída de tensión.

Verificación por intensidad

Nos queda que:

$$i_{adm-conductor} > i_C$$

Verificación de la caída de tensión

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13.,

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 109 de 163

que la máxima caída de tensión admisible entre los bornes de la salida del tablero principal y cualquier punto de utilización no debe superar para circuitos de iluminación el 3%.

Por la tanto calculamos la caída de tensión para circuito monofásico, la cual vendrá dada por:

Siendo

Caída de tensión: Circuito único

$$\begin{split} & \Delta V_1 \big[\%\big] = 2 \cdot 13, 3 \frac{\Omega}{Km} \cdot \frac{l_{\text{max} ima} \cdot i_{total} \cdot \cos \phi}{220V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = 2 \cdot 13, 3 \frac{\Omega}{Km} \cdot \frac{(8, 4m.2, 64A.0, 8) \cdot 10^{-3} \, \frac{Km}{m} \cdot A}{220V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = 0, 64\% \Rightarrow verifica \end{split}$$

A este valor obtenido se lo sumará a la caída de tensión de la línea seccional que se calculará luego, para verificar que sea menor al 3%.

7.2. Cálculo y selección de los conductores de Toma corrientes

7.2.1. Calculo de sección de cable de tomacorriente oficinas TG-T1

Consideramos según norma AEA para un tomacorriente monofásico de uso general una corriente máxima de 10A.

Selección de los conductores

Considerando las características de nuestra instalación seleccionamos del catálogo de PRYSMIAN, el conductor SUPERASTIC FLEX, ya que está indicado para instalaciones de iluminación y distribución de energía en el interior de edificios civiles e industriales, en circuitos primarios, secundarios y derivaciones.

Este conductor seleccionado tiene las siguientes características:

Metal: Cobre electrolítico recocido.

Flexibilidad: clase 5; según IRAM NM-280 e IEC 60228.

Temperatura máxima en el conductor: 70º C en servicio continuo, 160º C en cortocircuito.

Además su aislante es de PVC ecológico.

Para adoptar la sección del conductor del circuito de tomacorriente consideramos una corriente máxima que circulará de 10A.

$$i_{t} = 10A$$

Si observamos a continuación el catalogo de cable de PRYSMIAN, podemos ver con un cable de una sección de 1 mm2 ya es suficiente; dado que la corriente admisible por el conductor es mayor a la intensidad requerida por cada circuito.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 110 de 163

 $i_{Conductor} > i_{tomacorriente}$ 10,5A > 10A

Sección nominal	Diámetro máx. de alam- bres del con- ductor	Espesor de aislación nominal	Diámetro exterior aprox.	Masa aprox.	Intensidad de corriente admisible en cañerías (3)		Caída de tensión (4)	Resistencia Eléctrica máxima a 20 ⁰ C y c.c.
mm²	mm	mm	mm	kg/km	⊖ (1) A	(2) A	V/A km	ohm/km
0,75	0,21	0,6	2,3	11	9	8	50	26
1,0	0,21	0,6	2,5	15	11,5	10,5	37	19,5
1,5	0,26	0,7	3,0	20	15	13	26	13,3
2,5	0,26	0,8	3,6	31	21	18	15	7,98
4	0,31	0,8	4,1	45	28	25	10	4,95
6	0,31	0,8	4,7	63	36	32	6,5	3,30
10	0,41	1,0	6,0	107	50	44	3,8	1,91
16	0,41	1,0	7,0	167	66	59	2,4	1,21
25	0,41	1,2	9,6	268	88	77	1,54	0,78
35	0,41	1,2	10,8	361	109	96	1,20	0,554
50	0,41	1,4	12,8	511	131	117	0,83	0,386
70	0,51	1,4	14,6	698	167	149	0,61	0,272
95	0,51	1,6	16,8	899	202	180	0,48	0,206
120	0,51	1,6	19,7	1175	234	208	0,39	0,161

Pero según Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina establece la sección mínima, para conductores de circuito de terminales para tomacorrientes de uso generales, de 2,5mm2 de acuerdo a la TABLA 771.13.I. del apartado 771.13. (Se adjunta tabla)

Tabla 771.13.I - Secciones mínimas de conductores

Líneas principales	4,00 mm ²
Circuitos seccionales	2,50 mm ²
Circuitos terminales para iluminación de usos generales (con co- nexión fija o a través de tomacorrientes)	1,50 mm ²
Circuitos terminales para tomacorrientes de usos generales	2,50 mm ²
Circuitos terminales para iluminación de usos generales que inclu- yen tomacorrientes de usos generales	2,50 mm ²
Lineas de circuito para usos especiales	2,50 mm ²
Líneas de circuito para uso específico (excepto MBTF)	2,50 mm ²
Líneas de circuito para uso específico (alimentación a MBTF)	1,50 mm ²
Alimentaciones a interruptores de efecto	1,50 mm²
Retornos de los interruptores de efecto	1,50 mm ²
Conductor de protección	2,50 mm²

Además las luminarias estarán conectadas con un conductor de puesta a tierra de una sección de 2,5mm2 como se solicita en la tabla anterior.

Por lo tanto adoptamos del catalogo de PRYSMIAN, el cable de 2,5 mm2 de sección, que pasamos a verificarlo por intensidad de corriente y por caída de tensión.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 111 de 163

Sección nominal	Diámetro máx. de alam- bres del con- ductor	Espesor de aislación nominal	Diámetro exterior aprox.	Masa aprox.	Intensidad de corriente admisible en cañerías (3)		Caída de tensión (4)	Resistencia Eléctrica máxima a 20°C y c.c.
mm²	mm	mm	mm	kg/km	⊖ (1) A	○ (2)	V/A km	ohm/km
0,75	0,21	0,6	2,3	11	9	8	50	26
1,0	0,21	0,6	2,5	15	11,5	10,5	37	19,5
1,5	0,26	0,7	3,0	20	15	13	26	13,3
2,5	0,26	0,8	3,6	31	21	18	15	7,98
4	0,31	0,8	4,1	45	28	25	10	4,95
6	0,31	0,8	4,7	63	36	32	6,5	3,30
10	0,41	1,0	6,0	107	50	44	3,8	1,91
16	0,41	1,0	7,0	167	66	59	2,4	1,21
25	0,41	1,2	9,6	268	88	77	1,54	0,78
35	0,41	1,2	10,8	361	109	96	1,20	0,554
50	0,41	1,4	12,8	511	131	117	0,83	0,386
70	0,51	1,4	14,6	698	167	149	0,61	0,272
95	0,51	1,6	16,8	899	202	180	0,48	0,206
120	0,51	1,6	19,7	1175	234	208	0,39	0,161

Verificación por intensidad

Como ya vimos anteriormente que para un cable de mucho menor diámetro ya verificaba con lo cual para este, lo hará con mayor holgura; debido a que admite una mayor corriente nos queda que:

$$i_{Conductor} > i_{tomacorriente}$$

 $18A > 10A$

Verificación de la caída de tensión

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero principal y cualquier punto de utilización no debe superar el 3%.

Por la tanto calculamos la caída de tensión para circuito monofásico, la cual vendrá

dada por:

$$\begin{split} &\Delta V \left[\%\right]_{Circuito} = 2.\frac{\rho}{S}.\frac{i_{total} \, \phi.l_{\max{ima}}}{V}.100\% \\ &\Delta V \left[\%\right]_{Circuito} = 2.r.\frac{i_{total} \, \phi.l_{\max{ima}}}{V}.100\% \end{split}$$

Siendo

 i_{total} = corriente total que circula por el circuito I_{maxima} = distancia más alejada de la luminaria al tablero V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 112 de 163

$$\Delta V_{1}[\%] = 2.7,98 \frac{\Omega}{Km} \cdot \frac{l_{\max ima} \cdot l_{total} \cdot \cos \phi}{220V} \cdot 100\%$$

$$\Delta V_{1}[\%] = 2.7,98 \frac{\Omega}{Km} \cdot \frac{(11m.10A.0,8) \cdot 10^{-3} \frac{Km}{m} \cdot A}{220V} \cdot 100\%$$

$$\Delta V_{1}[\%] = 0,64\% \Rightarrow verifica$$

La caída de tención verifica ya que es menor al 3%.

7.2.2. Calculo de selección de cable de tomacorriente nave1 B TG-T2

Consideramos según norma AEA para un tomacorriente trifásicos de uso general una corriente máxima por fase de 16A.

$$i_f = 16A$$

Selección de los conductores

Considerando las características de nuestra instalación seleccionamos del catálogo de PRYSMIAN, el conductor SINTENAX VALIO, ya que está diseñado para la distribución de energía en baja tensión en edificios e instalaciones industriales, en tendidos subterráneos o sobre bandejas.

Por lo tanto seleccionamos un cable tetrapolares del catalogo, como veremos en la figura siguiente, un cable de 2,5mm2.

			Datos Eléctr		ENAX	VALIC
	Intensidad	admisible en	The second of the second	bles con conduct	ores de cobr	e.
Sección nominal	Método Embutido Caño a	B2 Caño en pared la vista	Bandeja no p fondo	odo C verforada o de sólido	Método E Bandeja perforada Bandeja tipo escalera	
		®	900	2000	<u></u>	<u></u>
mm²	(1)	(2)	(3)	(4)	(5)	(6)
1,5	13	12	16	14	18	15
2,5	19	16	21	19	24	20
4	24	21	29	26	33	28
6	31	28	38	34	41	35
10	42	38	52	47	57	49
16	57	51	70	62	77	66
25	74	66	92	79	98	83

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 113 de 163

					SINT	ENAX V	ALIO
			Caracteri	sticas técni	cas		
		(Cables con co	onductiones de	e cobre		
Sección nominal mm²	Diámetro del conductor aproximado	Espesor nominal de aislación	Espesor nominal de envoltura	Diámetro exterior aproxi- mado	Masa aproxi- mada kg/km	Resistencia electrica max, a 70°C y 50 Hz. ohm/km	Reactancia a 50 Hz. ohm/km
	res (almas de col			22332 123			
i cu apoia	res (dimas de co	or marron, no	gro, rojo y az	ui dai oj			
1,5	1,5	0,8	1,8	11	170	15,9	0,108
2,5	1,9	0,8	1,8	12	220	9,55	0,0995
4	2,4	1,0	1,8	15	320	5,92	0,0991
6	3	1,0	1,8	16	415	3,95	0,0901
10	3,9	1,0	1,8	18	605	2,29	0,0860
16	4,9	1,0	1,8	22	980	1,45	0,0813

Verificación por intensidad

Por lo que podemos ver:

$$i_{conductor} > i_{fase}$$

Verificación de la caída de tensión

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero principal y cualquier punto de utilización no debe superar el 3%.

Por la tanto calculamos la caída de tensión para circuito trifásico, la cual vendrá dada

por:

$$\begin{split} &\Delta V \left[\%\right]_{Circuito} = \sqrt{3}.\frac{\rho}{S}.\frac{i_{total} \phi.l_{\max{ima}}}{V}.100\% \\ &\Delta V \left[\%\right]_{Circuito} = \sqrt{3}.r.\frac{i_{total} \phi.l_{\max{ima}}}{V}.100\% \end{split}$$

Siendo

itotal = corriente total que circula por la fase

I_{maxima}= la distancia más alejada del tomacorriente al tablero

V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

$$\begin{split} & \Delta V_1 \big[\% \big] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{l_{\text{max}ima} \cdot i_{\text{total}} \cdot \cos \phi}{380V} \cdot 100\% \\ & \Delta V_1 \big[\% \big] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{(28m.16A.0,8) \cdot 10^{-3} \, \frac{Km}{m} \cdot A}{380V} \cdot 100\% \\ & \Delta V_1 \big[\% \big] = 1,56\% \Rightarrow verifica \end{split}$$

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 114 de 163

La caída de tención verifica ya que es menor al 3%.

7.2.3. Calculo de selección de cable de tomacorriente nave2 A TG-T3

Al igual que el anterior se considera según norma AEA para un tomacorriente trifásico de uso general una corriente máxima por fase de 16A.

$$i_f = 16A$$

Selección de los conductores

Por lo tanto seleccionamos un cable tetrapolares del catalogo prysmian igual anteriormente seleccionado, y de igual sección.

Verificación por intensidad

$$i_{conductor} > i_{fase}$$

Verificación de la caída de tensión

Calculamos de igual manera la caída de tensión para circuito trifásico, la cual vendrá dada por:

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3} \cdot \frac{\rho}{S} \cdot \frac{i_{total} \phi \cdot l_{\max ima}}{V} \cdot 100\%$$

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3}.r.\frac{i_{total} \ \phi.l_{\max ima}}{V}.100\%$$

Siendo

itotal= la corriente total que circula por la fase

I_{maxima}= la distancia más alejada del tomacorriente al tablero

V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

Caída de tensión: Circuito único

$$\Delta V_1 [\%] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{l_{\text{max}ima} \cdot i_{\text{total}} \cdot \cos \phi}{380V} \cdot 100\%$$

$$\Delta V_1 [\%] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{(26m.16A.0,8) \cdot 10^{-3} \frac{Km}{m} \cdot A}{380V} \cdot 100\%$$

$$\Delta V_1[\%] = 1,45\% \Rightarrow verifica$$

La caída de tención verifica ya que es menor al 3%.

7.2.4. Calculo de sección de cable de tomacorriente nave1 A TS1-T1

Al igual que el anterior se considera según norma AEA para un tomacorriente trifásico de uso general una corriente máxima por fase de 16A.

$$i_f = 16A$$

Selección de los conductores

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 115 de 163

Por lo tanto seleccionamos un cable tetrapolares del catalogo prysmian igual anteriormente adoptado, y de igual sección.

Verificación por intensidad

$$i_{conductor} > i_{fase}$$

Verificación de la caída de tensión

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero seccional y cualquier punto de utilización no debe superar el 2%.

Por la tanto calculamos la caída de tensión para circuito trifásico, la cual vendrá dada

por

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3} \cdot \frac{\rho}{S} \cdot \frac{i_{total} \phi \cdot l_{\max ima}}{V} \cdot 100\%$$

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3}.r. \frac{i_{total} \phi.l_{\max{ima}}}{V}.100\%$$

Siendo

itotal = corriente total que circula por la fase

I_{maxima}= distancia más alejada del tomacorriente al tablero

V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

Caída de tensión: Circuito único

$$\Delta V_1 [\%] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{l_{\text{max}ima} \cdot i_{\text{total}} \cdot \cos \phi}{380V} \cdot 100\%$$

$$\Delta V_1[\%] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{(12m.16A.0,8) \cdot 10^{-3} \frac{Km}{m} \cdot A}{380V} \cdot 100\%$$

$$\Delta V_1[\%] = 0,48\% \Rightarrow verifica$$

La caída de tención verifica ya que es menor al 2%.

7.2.5. Calculo de sección de cable de tomacorriente cabina de pintura TS1-T2.

Al igual que el anterior se considera según norma AEA para un tomacorriente trifásico de uso general una corriente máxima por fase de 16A.

$$i_f = 16A$$

Selección de los conductores

Por lo tanto seleccionamos un cable tetrapolares del catalogo prysmian igual anteriormente seleccionado, y de igual sección.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 116 de 163

Verificación por intensidad

$$i_{\it conductor} > i_{\it fase}$$

Verificación de la caída de tensión

Por la tanto calculamos la caída de tensión para circuito trifásico, de igual manera que el anterior, nos queda:

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3} \cdot \frac{\rho}{S} \cdot \frac{i_{total} \phi \cdot l_{\max ima}}{V} \cdot 100\%$$

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3}.r.\frac{i_{total} \ \phi.l_{\max ima}}{V}.100\%$$

Siendo

itotal = corriente total que circula por la fase

I_{maxima}= distancia más alejada del tomacorriente al tablero

V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

Caída de tensión: Circuito único

$$\Delta V_1 [\%] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{l_{\text{max} ima} \cdot i_{\text{total}} \cdot \cos \phi}{380V} \cdot 100\%$$

$$\Delta V_1 [\%] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{(10,50m.16A.0,8) \cdot 10^{-3} \frac{Km}{m} \cdot A}{380V} \cdot 100\%$$

$$\Delta V_1[\%] = 0,42\% \Rightarrow verifica$$

La caída de tención verifica ya que es menor al 2%.

7.2.6. Calculo de sección de cable de tomacorriente compresor Nave 1 TS1-T3

Según el compresor seleccionado el tiene las siguientes características:

Marca: BTA

Modelo: LA274222.6

Características: 5,5hp - 300 Lts. – Trifásico

$$i_{compresor} = 8,33A$$

Selección de los conductores

Seleccionamos un cable tetrapolares del catalogo prysmian igual al anteriormente adoptado, y de la misma sección.

Verificación por intensidad

$$i_{conductor} > i_{fase}$$

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 117 de 163

Verificación de la caída de tensión

Por la tanto calculamos la caída de tensión para circuito trifásico, de igual manera que el anterior, nos queda:

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3} \cdot \frac{\rho}{S} \cdot \frac{i_{total} \phi \cdot l_{\max ima}}{V} \cdot 100\%$$

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3} \cdot r \cdot \frac{i_{total} \phi \cdot l_{\max ima}}{V} \cdot 100\%$$

Siendo

i_{total}= corriente total que circula por la fase

I_{maxima}= distancia más alejada del tomacorriente al tablero

V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

Caída de tensión: Circuito único

$$\begin{split} & \Delta V_1 \big[\%\big] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{l_{\max ima} \cdot i_{total} \cdot \cos \phi}{380V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{(6m.8.33A.0,8) \cdot 10^{-3} \ Km/m \cdot A}{380V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = 0,13\% \Rightarrow verifica \end{split}$$

La caída de tención verifica ya que es menor al 2%.

7.2.7. Calculo de sección de cable de tomacorriente Baños y cambiadores TS2-T1

Consideramos según norma AEA para un tomacorriente monofásico de uso general una corriente máxima de 10A.

Selección de los conductores

Considerando las características de nuestra instalación seleccionamos del catálogo de PRYSMIAN, el conductor SUPERASTIC FLEX, ya que está indicado para instalaciones de iluminación y distribución de energía en el interior de edificios civiles e industriales, en circuitos primarios, secundarios y derivaciones.

Este conductor seleccionado tiene las siguientes características:

Metal: Cobre electrolítico recocido.

Flexibilidad: clase 5; según IRAM NM-280 e IEC 60228.

Temperatura máxima en el conductor: 70º C en servicio continuo, 160º C en cortocircuito.

Además su aislante es de PVC ecológico.

Para adoptar la sección del conductor del circuito de tomacorriente consideramos una corriente máxima que circulará de 10ª.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 118 de 163

$$i_t = 10A$$

Si observamos a continuación el catalogo de cable de PRYSMIAN, podemos ver con un cable de una sección de 1 mm2 ya es suficiente; dado que la corriente admisible por el conductor es mayor a la intensidad requerida por cada circuito.

$$i_{Conductor} > i_{tomacorriente}$$

10,5A > 10A

Sección nominal			aislación exterior aprox. admisible en cañerías (3) tensión (4)		ole en cañerías (3) tensión (4) Eléc máxi	Resistencia Eléctrica máxima a 20°C y c.c.		
mm²	mm	mm	mm	kg/km	⊖ (1) A	(2) A	V/A km	ohm/km
0,75	0,21	0,6	2,3	11	9	8	50	26
1,0	0,21	0,6	2,5	15	11,5	10,5	37	19,5
1,5	0,26	0,7	3,0	20	15	13	26	13,3
2,5	0,26	0,8	3,6	31	21	18	15	7,98
4	0,31	0,8	4,1	45	28	25	10	4,95
6	0,31	0,8	4,7	63	36	32	6,5	3,30
10	0,41	1,0	6,0	107	50	44	3,8	1,91
16	0,41	1,0	7,0	167	66	59	2,4	1,21
25	0,41	1,2	9,6	268	88	77	1,54	0,78
35	0,41	1,2	10,8	361	109	96	1,20	0,554
50	0,41	1,4	12,8	511	131	117	0,83	0,386
70	0,51	1,4	14,6	698	167	149	0,61	0,272
95	0,51	1,6	16,8	899	202	180	0,48	0,206
120	0,51	1,6	19,7	1175	234	208	0,39	0,161

Pero según Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina establece la sección mínima, para conductores de circuito de terminales para tomacorrientes de uso generales, de 2,5mm2 de acuerdo a la TABLA 771.13.I. del apartado 771.13. (Ver tabla anterior)

Además los tomacorrientes estarán conectados con un conductor de puesta a tierra de una sección de 2,5mm2 como se solicita en la tabla anterior.

Por lo tanto adoptamos del catalogo de PRYSMIAN, el cable de 2,5 mm2 de sección, que pasamos a verificarlo por intensidad de corriente y por caída de tensión.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 119 de 163

Sección nominal	Diámetro máx. de alam- bres del con- ductor	Espesor de aislación nominal	Diámetro exterior aprox.	Masa aprox.	Intensidad de corriente admisible en cañerías (3)		Caída de tensión (4)	Resistencia Eléctrica máxima a 20°C y c.c.
mm²	mm	mm	mm	kg/km	⊖ (1) A	○ (2)	V/A km	ohm/km
0,75	0,21	0,6	2,3	11	9	8	50	26
1,0	0,21	0,6	2,5	15	11,5	10,5	37	19,5
1,5	0,26	0,7	3,0	20	15	13	26	13,3
2,5	0,26	0,8	3,6	31	21	18	15	7,98
4	0,31	0,8	4,1	45	28	25	10	4,95
6	0,31	0,8	4,7	63	36	32	6,5	3,30
10	0,41	1,0	6,0	107	50	44	3,8	1,91
16	0,41	1,0	7,0	167	66	59	2,4	1,21
25	0,41	1,2	9,6	268	88	77	1,54	0,78
35	0,41	1,2	10,8	361	109	96	1,20	0,554
50	0,41	1,4	12,8	511	131	117	0,83	0,386
70	0,51	1,4	14,6	698	167	149	0,61	0,272
95	0,51	1,6	16,8	899	202	180	0,48	0,206
120	0,51	1,6	19,7	1175	234	208	0,39	0,161

Verificación por intensidad

Como ya vimos anteriormente que para un cable de mucho menor diámetro ya verificaba con lo cual para este, lo hará con mayor holgura; debido a que admite una mayor corriente nos queda que:

$$i_{\it Conductor} > i_{\it tomacorriente}$$

Verificación de la caída de tensión

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero seccional y cualquier punto de utilización no debe superar el 2%.

Calculamos la caída de tensión para circuito monofásico, la cual vendrá dada por:

$$\Delta V \left[\%\right]_{Circuito} = 2.\frac{\rho}{S}.\frac{i_{total} \, \phi.l_{\max{ima}}}{V}.100\%$$

$$\Delta V \left[\%\right]_{Circuito} = 2.r. \frac{i_{total} \; \phi.l_{\max{ima}}}{V}.100\%$$

Siendo

i_{total}= corriente total que circula por el circuito

I_{maxima}= distancia más alejada de la luminaria al tablero

V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 120 de 163

$$\begin{split} & \Delta V_1 \big[\%\big] = 2 \cdot 7,98 \frac{\Omega}{Km} \cdot \frac{l_{\text{max}ima} \cdot i_{\text{total}} \cdot \cos \phi}{220V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = 2 \cdot 7,98 \frac{\Omega}{Km} \cdot \frac{(15m.10A.0,8) \cdot 10^{-3} \, \frac{Km}{m} \cdot A}{220V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = 1,04\% \Rightarrow verifica \end{split}$$

La caída de tención verifica ya que es menor al 2%.

7.2.8. Calculo de sección de cable de tomacorriente nave2 B TS2-T2

Al igual que el anterior se considera según norma AEA para un tomacorriente trifásico de uso general una corriente máxima por fase de 16A.

$$i_f = 16A$$

Selección de los conductores

Por lo tanto seleccionamos un cable tetrapolares del catalogo prysmian igual anteriormente seleccionado, y de igual sección.

Verificación por intensidad

$$i_{conductor} > i_{fase}$$

Verificación de la caída de tensión

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero seccional y cualquier punto de utilización no debe superar el 2%.

Por la tanto calculamos la caída de tensión para circuito trifásico, la cual vendrá dada

por

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3} \cdot \frac{\rho}{S} \cdot \frac{i_{total} \phi \cdot l_{\text{max} ima}}{V} \cdot 100\%$$

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3}.r.\frac{i_{total} \; \phi.l_{\max{ima}}}{V}.100\%$$

Siendo

i_{total}= corriente total que circula por la fase

I_{maxima}= distancia más alejada del tomacorriente al tablero

V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 121 de 163

$$\Delta V_{1} [\%] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{l_{\text{max}, ima} \cdot i_{total} \cdot \cos \phi}{380V} \cdot 100\%$$

$$\Delta V_{1} [\%] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{(17m.16A.0,8) \cdot 10^{-3} \ Km/m}{380V} \cdot 100\%$$

$$\Delta V_{1} [\%] = 0,68\% \Rightarrow verifica$$

La caída de tención verifica ya que es menor al 2%.

7.2.9. Calculo de sección de cable de tomacorriente compresor Nave 2 TS2-FM

Al igual que en la nave 1 se seleccionado un compresor que tiene las siguientes características:

Marca: BTA

Modelo: LA274222.6

Características: 5,5hp - 300 Lts. - Trifásico

 $i_{compresor} = 8,33A$

Selección de los conductores

Seleccionamos un cable tetrapolares del catalogo prysmian igual al anteriormente seleccionado, y de la misma sección.

Verificación por intensidad

$$i_{conductor} > i_{fase}$$

Verificación de la caída de tensión

Por la tanto calculamos la caída de tensión para circuito trifásico, de igual manera que el anterior, nos queda:

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3}.\frac{\rho}{S}.\frac{i_{total}\,\phi.l_{\max{ima}}}{V}.100\%$$

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3}.r.\frac{i_{total} \ \phi.l_{\max ima}}{V}.100\%$$

Siendo

i_{total}= corriente total que circula por la fase

I_{maxima}= distancia más alejada del tomacorriente al tablero

V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 122 de 163

$$\Delta V_{1}[\%] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{l_{\text{max} ima} \cdot i_{total} \cdot \cos \phi}{380V} \cdot 100\%$$

$$\Delta V_{1}[\%] = \sqrt{3} \cdot 9,55 \frac{\Omega}{Km} \cdot \frac{(12m.8.33A.0,8) \cdot 10^{-3} \frac{Km}{m} \cdot A}{380V} \cdot 100\%$$

$$\Delta V_{1}[\%] = 0,25\% \Rightarrow verifica$$

La caída de tención verifica ya que es menor al 2%.

7.3. Cálculo y selección de los conductores de Ramal Alimentador

7.3.1. Calculo de sección de cable del ramal alimentador entre el TG - TS1

Realizando la suma de todas las corrientes que son alimentadas desde el tablero secundario, obtenemos la corriente que circulará por el conductor. Esta es igual a: $i_f = 43,85\,A$

Selección de los conductores

Considerando las características de nuestra instalación seleccionamos del catálogo de PRYSMIAN, el conductor SINTENAX VALIO, ya que está diseñado para la distribución de energía en baja tensión en edificios e instalaciones industriales, en tendidos subterráneos o sobre bandejas.

Por lo tanto seleccionamos un cable tetrapolar del catalogo, como veremos en la figura siguiente, un cable de 10mm2.

SINTENAX VALIO Datos Eléctricos

Intensidad admisible en ampere para cables con conductores de cobre.

Sección nominal	Método B2 Caño Embutido en pared Caño a la vista		Bandeja no p fondo	odo C perforada o de sólido	Método E Bandeja perforada Bandeja tipo escalera	
		®	900	2000	<u></u>	<u></u>
mm²	(1)	(2)	(3)	(4)	(5)	(6)
1,5	13	12	16	14	18	15
2,5	19	16	21	19	24	20
4	24	21	29	26	33	28
6	31	28	38	34	41	35
10	42	38	52	47	57	49
16	57	51	70	62	77	66

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 123 de 163

					SINT	ENAX V	ALIO
				sticas técni	77777		
			Cables con co	onductores d	e cobre	•	
Sección nominal	Diámetro del conductor aproximado	Espesor nominal de aislación	Espesor nominal de envoltura	Diámetro exterior aproxi- mado	Masa aproxi- mada	Resistencia eléctrica max. a 70°C y 50 Hz.	Reactancia a 50 Hz.
mm²	mm	mm	mm	mm	kg/km	ohm/km	ohm/km
Tetrapola	res (almas de col	or marrón, ne	gro, rojo y az	rul daro)			
1,5	1,5	0,8	1,8	11	170	15,9	0,108
2,5	1,9	0,8	1,8	12	220	9,55	0,0995
4	2,4	1,0	1,8	15	320	5,92	0,0991
6	3	1,0	1,8	16	415	3,95	0,0901
10	3,9	1,0	1,8	18	605	2,29	0,0860
16	4,9	1,0	1,8	22	980	1,45	0,0813

Verificación por intensidad

Por lo que podemos ver:

$$i_{conductor} > i_{fase}$$

Verificación de la caída de tensión

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero principal y el tablero secundario no debe superar el 1%.

Por la tanto calculamos la caída de tensión para circuito trifásico, la cual vendrá dada

por:

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3} \cdot \frac{\rho}{S} \cdot \frac{i_{total} \phi \cdot l_{\max ima}}{V} \cdot 100\%$$

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3}.r.\frac{i_{total} \; \phi.l_{\max{ima}}}{V}.100\%$$

Siendo

i_{total}= corriente total que circula por la fase

I_{maxima}= distancia más alejada del tomacorriente al tablero

V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 124 de 163

$$\begin{split} & \Delta V_1 \big[\%\big] = \sqrt{3} \cdot 2,29 \frac{\Omega}{Km} \cdot \frac{l_{\text{max}ima} \cdot i_{\text{total}} \cdot \cos \phi}{380V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = \sqrt{3} \cdot 2,29 \frac{\Omega}{Km} \cdot \frac{(28,5m.43,85A.0,8) \cdot 10^{-3} \, \frac{Km}{m} \cdot A}{380V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = 1,1\% \Rightarrow no-verifica \end{split}$$

La caída de tención no verifica ya que es mayor al 1%.

Por ello es que seleccionamos la sección mayor que le sigue que es del mismo catálogo, donde la misma es igual a 16mm2.

Si a continuación verificamos nos queda:

Verificación por intensidad

Por lo que podemos ver:

$$i_{conductor} > i_{fase}$$
 $62A > 43,85A$

Verificación de la caída de tensión

Caída de tensión: Circuito único

$$\begin{split} & \Delta V_1 \big[\%\big] = \sqrt{3} \cdot 1,45 \frac{\Omega}{Km} \cdot \frac{l_{\text{max}ima} \cdot i_{\text{total}} \cdot \cos \phi}{380V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = \sqrt{3} \cdot 1,45 \frac{\Omega}{Km} \cdot \frac{(28,5m.43,85A.0,8) \cdot 10^{-3} \, \frac{Km}{m} \cdot A}{380V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = 0,66\% \Rightarrow verifica \end{split}$$

La caída de tención verifica ya que es mayor al 1%.

7.3.2. Calculo de sección de cable del ramal alimentador entre el TG – TS2

Realizando la suma de todas las corrientes que son alimentadas desde el tablero secundario, obtenemos la corriente que circulará por el conductor. Esta es igual a: $i_f = 40,72A$

Selección de los conductores

Considerando las características de nuestra instalación seleccionamos del catálogo de PRYSMIAN, el conductor SINTENAX VALIO, ya que está diseñado para la distribución de energía en baja tensión en edificios e instalaciones industriales, en tendidos subterráneos o sobre bandejas.

Por lo tanto seleccionamos un cable tetrapolar del catalogo, como veremos en la figura siguiente, un cable de 10mm2.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 125 de 163

SINTENAX VALIO

Datos Eléctricos

Intensidad admisible en ampere para cables con conductores de cobre.

Sección nominal	Método B2 Caño Embutido en pared Caño a la vista		Método C Bandeja no perforada o de fondo sólido		Método E Bandeja perforada Bandeja tipo escalera	
		®		% 000	(a)	<u>@</u>
mm²	(1)	(2)	(3)	(4)	(5)	(6)
1,5	13	12	16	14	18	15
2,5	19	16	21	19	24	20
4	24	21	29	26	33	28
6	31	28	38	34	41	35
10	42	38	52	47	57	49
16	57	51	70	62	77	66

SINTENAX VALIO

Características técnicas

Cables con conductores de cobre

Sección nominal mm²	Diámetro del conductor aproximado	Espesor nominal de aislación mm	Espesor nominal de envoltura	Diámetro exterior aproxi- mado	Masa aproxi- mada kg/km	Resistencia eléctrica max, a 70°C y 50 Hz. ohm/km	Reactancia a 50 Hz. ohm/km
	res (almas de col	or marrón, ne	gro, rojo y az	ul daro)			
1,5	1,5	0,8	1,8	11	170	15,9	0,108
2,5	1,9	0,8	1,8	12	220	9,55	0,0995
4	2,4	1,0	1,8	15	320	5,92	0,0991
6	3	1,0	1,8	16	415	3,95	0,0901
10	3,9	1,0	1,8	18	605	2,29	0,0860
16	4,9	1,0	1,8	22	980	1,45	0,0813

Verificación por intensidad

Por lo que podemos ver:

 $i_{conductor} > i_{fase}$

49A > 40,72A

Verificación de la caída de tensión

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 126 de 163

De a cuerdo con el Reglamento para la Ejecución de Instalaciones Eléctricas en Inmuebles de la Asociación Electrotécnica Argentina, establece en el apartado 771.13., que la máxima caída de tensión admisible entre los bornes de la salida del tablero principal y el tablero secundario no debe superar el 1%.

Por la tanto calculamos la caída de tensión para circuito trifásico, la cual vendrá dada

por:

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3} \cdot \frac{\rho}{S} \cdot \frac{i_{total} \phi \cdot l_{\max ima}}{V} \cdot 100\%$$

$$\Delta V \left[\%\right]_{Circuito} = \sqrt{3} \cdot r \cdot \frac{i_{total} \phi \cdot l_{\max ima}}{V} \cdot 100\%$$

Siendo

itotal= corriente total que circula por la fase

I_{maxima}= distancia más alejada del tomacorriente al tablero

V=tensión de servicio

r = resistencia eléctrica máxima a 20C° y cc.

Caída de tensión: Circuito único

$$\begin{split} & \Delta V_1 \big[\%\big] = \sqrt{3} \cdot 2,29 \frac{\Omega}{Km} \cdot \frac{l_{\text{max}ima} \cdot i_{\text{total}} \cdot \cos \phi}{380V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = \sqrt{3} \cdot 2,29 \frac{\Omega}{Km} \cdot \frac{(33,35m.40,72A.0,8) \cdot 10^{-3} \ \textit{Km} / m \cdot \textit{A}}{380V} \cdot 100\% \\ & \Delta V_1 \big[\%\big] = 1,13\% \Rightarrow no-verifica \end{split}$$

La caída de tención no verifica ya que es mayor al 1%.

Por ello es que seleccionamos la sección mayor que le sigue que es del mismo catálogo, donde la misma es igual a 16mm².

Si a continuación verificamos nos queda:

Verificación por intensidad

Por lo que podemos ver:

$$i_{conductor} > i_{fase}$$
 $62A > 40,72A$

Verificación de la caída de tensión

Caída de tensión: Circuito único

$$\Delta V_{1}[\%] = \sqrt{3} \cdot 1,45 \frac{\Omega}{Km} \cdot \frac{l_{\max ima} \cdot i_{total} \cdot \cos \phi}{380V} \cdot 100\%$$

$$\Delta V_{1}[\%] = \sqrt{3} \cdot 1,45 \frac{\Omega}{Km} \cdot \frac{(33,35m.40,72A.0,8) \cdot 10^{-3} \frac{Km}{m} \cdot A}{380V} \cdot 100\%$$

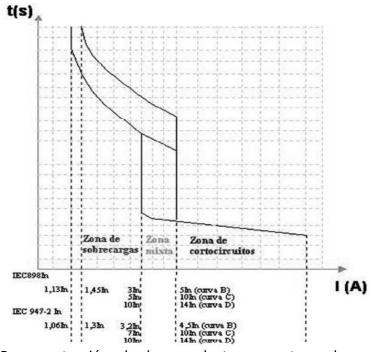
$$\Delta V_{1}[\%] = 0,71\% \Rightarrow verifica$$

La caída de tención verifica ya que es mayor al 1%.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 127 de 163

7.4. Protecciones

Introducción teórica


Cuando nos referimos a una sobrecarga hablamos de un aumento paulatino de corriente por encima de la corriente nominal (In). Esta puede darse por una anomalía permanente que se empieza a manifestar por falla de aislación, o también pueden ser el caso de transitorias como por ejemplo, corriente de arranque de motores.

A la hora de seleccionar tanto los cables como receptores, se hace considerando que sean capases admitir una carga superior a la normal durante un tiempo determinado sin poner en riesgo sus características aislantes.

Para el caso de este tipo de sobrecargas la cual se manifiesta de manera violenta es decir varias veces la corriente nominal (In) de manera instantánea estamos frente a un cortocircuito, el cual deberá aislarse rápidamente para salvaguardar los bienes, para estos casos están los interruptores termomagnéticos.

Un interruptor diferencial, también llamado disyuntor por corriente diferencial o residual, es un dispositivo electromecánico que se coloca en las instalaciones eléctricas de corriente alterna, con el fin de proteger a las personas de las derivaciones causadas por faltas de aislamiento entre los conductores activos y tierra o masa de los aparatos.

Características de disparo de las protecciones termomagnéticas

Para protección de los conductores contra sobrecargas, según la AEA sección 771.18.13.1, la cual nos dice que:

Para conductores aislados en PVC, para obtener la protección se debe cumplir con los siguientes puntos:

 $lp \le ln \le lc$

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 128 de 163

Siendo:

Ip: es la corriente de proyecto (corriente de empleo para la cual el circuito fue diseñado)

In: es la corriente nominal del interruptor Ic: es la corriente nominal del conductor

Además:

If ≤ 1,45.Ic

Siendo:

If: es la corriente que hace abrir al interruptor en menos de 1 hora, cuando In es \leq 32A, o en menos de 2 horas si In > 32A.

Por lo tanto si se cumple con los dos puntos anteriormente expuestos, podemos decir que el conductor se encuentra protegido contra sobrecarga de corta y larga duración.

Características de disparo

Según sea el caso de aplicación, se dispone de las siguientes características de disparo fijadas en las normas IEC 947.2 y 898.

<u>Característica de disparo A</u>: indicada para la protección de transformadores en circuitos de medición, circuitos muy largos y que deben desconectar dentro de los 0,2 segundos.

<u>Característica de disparo B</u>: Circuitos resistivos o con gran longitud de cable hasta el receptor.

<u>Característica de disparo C</u>: de uso ventajoso para equipos eléctricos con corrientes de conexión más elevadas, como por ejemplo, lámparas y motores.

<u>Característica de disparo D:</u> adecuada para aquellos aparatos eléctricos cuya conexión hace circular fuertes impulsos de corriente, tales como transformadores, condensadores y electroválvulas.

Para nuestro caso, seleccionaremos las protecciones según la característica de disparo C, en la cual, la protección por sobrecargas actuará entre 1,13 y 1,45 veces la intensidad nominal, y la protección ante cortocircuitos entre 5 y 10 veces In.

7.4.1. Selección de protecciones en los circuitos de iluminación

7.4.1.1. Nave 1 y Nave 2

Para estos se colocaran 4 interruptores termomagnéticos, uno por cada circuito distribuidos entre las distintas fases, los cuales tienen las siguientes características:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 129 de 163

Interruptores automáticos C60N curvas B, C y D

	6000 A - IE	C 898 - 10kA	- IEC 947	7.2
	1 polo			
1 polo protegido	In	Referen	cias	
Ancho de paso en 9mm: 2	(A)	cur∨a B	curva C	curva D
erronnin. 2	0,5		24067	
	1	24045	24395	24625
N .	2	24046	24396	24626
A	3	24047	24397	24627
	4	24048	24398	24628
	6	24049	24399	24629
4.0	10	24050	24401	24630
	16	24051	24403	24632

Verificación de los que los circuitos están protegidos

Ip ≤ In ≤ Ic Ip=15,3A In=16A Ic=18A 15,3A ≤16A ≤ 18A \rightarrow se cumple

If ≤ 1,45.Ic

Ic.1,45=26,1A

Como In es \leq 32A se busca de la curva de disparo "C" la corriente If para 60 minutos, siendo If \leq 1,45In=23,2A

23,2A≤ 26,1A

Como vemos se verifica las dos condiciones.

7.4.1.2. Cabina de Laminado – Cabina de Pre terminado – Cabina de pintado

Para estos sectores se colocaran un interruptor termomagnético por circuito, los cuales tienen las siguientes características:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 130 de 163

Interruptores automáticos C60N curvas B, C y D

1 polo protegido
Ancho de paso
en 9mm: 2

1 polo			
In	Referen	cias	
(A)	cur√a B	curva C	curva D
0,5		24067	
1	24045	24395	24625
2	24046	24396	24626
3	24047	24397	24627
4	24048	24398	24628
6	24049	24399	24629
10	24050	24401	24630
16	24051	24403	24632

6000 A - IEC 898 - 10kA - IEC 947.2

Verificación de los que los circuitos están protegidos

 $Ip \le In \le Ic$

Ip=3,52A

In=6A

Ic=13A

 $3,52A \le 6A \le 13A \rightarrow \text{se cumple}$

If ≤ 1,45.Ic Ic.1,45=18,85A

Como In es \leq 32A se busca de la curva de disparo "C" la corriente If para 60 minutos, siendo If \leq 1,45In=8,7A

8,7A≤ 18,85A

Como vemos se verifica las dos condiciones.

7.4.1.3. Cabina de curado

Para este se colocara un interruptor termomagnéticos, el cual tienen las siguientes características:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 131 de 163

Interruptores automáticos C60N curvas B, C y D

	6000 A - IEC	898 - 10kA	- IEC 947	'.2
	1 polo			
1 polo protegido Ancho de paso en 9mm: 2	In	Referen	cias	
	(A)	cur∨a B	curva C	curva D
	0,5		24067	
	1	24045	24395	24625
	2	24046	24396	24626
	3	24047	24397	24627
	4	24048	24398	24628
4	6	24049	24399	24629
	10	24050	24401	24630
	16	24051	24403	24632

Verificación de los que los circuitos están protegidos

 $lp \le ln \le lc$

Ip=1,76A

In=6A

Ic=13A

 $1,76A \le 6A \le 13A$ → se cumple

If ≤ 1,45.Ic Ic.1,45=18,85A

Como In es \leq 32A se busca de la curva de disparo "C" la corriente If para 60 minutos, siendo If \leq 1,45In=8,7A

8,7A≤ 18,85A

Como vemos se verifica las dos condiciones.

7.4.1.4. Baños y cambiadores

Para este se colocará un interruptor termomagnéticos, el cual tienen las siguientes características:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 132 de 163

Interruptores automáticos C60N curvas B, C y D

\$2 -	6000 A - IE	C 898 - 10kA	- IEC 947	'.2
	1 polo			
1 polo protegido	In Referencias			7
Ancho de paso en 9mm: 2	(A)	cur∨a B	curva C	curva D
en sinn. 2	0,5		24067	
	1	24045	24395	24625
	2	24046	24396	24626
A	3	24047	24397	24627
	4	24048	24398	24628
	6	24049	24399	24629
4.0	10	24050	24401	24630

Verificación de los que los circuitos están protegidos

 $lp \le ln \le lc$

Ip=0,64A

In=6A

Ic=13A

 $0,64A \le 6A \le 13A \rightarrow \text{se cumple}$

16

If ≤ 1,45.Ic Ic.1,45=18,85A

Como In es \leq 32A se busca de la curva de disparo "C" la corriente If para 60 minutos, siendo If \leq 1,45In=8,7A

24403

24051

24632

8,7A≤ 18,85A

Como vemos se verifica las dos condiciones. Se toma una termomagnetica de 6A porque conseguir en el mercado una de más pequeña, de 2A o de 4A es muy complicado, además se considera posibles ampliaciones y casi no hay diferencia de cotos.

7.4.1.5. Oficina

Para este se colocara un interruptor termomagnéticos, el cual tienen las siguientes características:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 133 de 163

Interruptores automáticos C60N curvas B, C y D

	6000 A - IE	C 898 - 10kA	- IEC 947	'.2
	1 polo			
1 polo protegido	In	In Referencias		
Ancho de paso en 9mm: 2	(A)	cur∨a B	cur∨a C	curva D
0110111111.2	0,5		24067	
1200	1	24045	24395	24625
A.	2	24046	24396	24626
	3	24047	24397	24627
	4	24048	24398	24628
4	6	24049	24399	24629
	10	24050	24401	24630
	16	24051	24403	24632

Verificación de los que los circuitos están protegidos

Ip ≤ In ≤ Ic Ip=2,64A In=6A Ic=13A $2,64A \le 6A \le 13A \rightarrow se cumple$

If ≤ 1,45.Ic Ic.1,45=18,85A

Como In es \leq 32A se busca de la curva de disparo "C" la corriente If para 60 minutos, siendo If \leq 1,45In=8,7A

8,7A≤ 18,85A

Como vemos se verifica las dos condiciones.

Como vemos se verifica las dos condiciones. Se toma una termomagéntica de 6A porque conseguir en el mercado una de más pequeña, de 4A es muy complicado, además se considera posibles ampliaciones y casi no hay diferencia de cotos.

7.4.2. Selección de protecciones en los circuitos de tomacorrientes

7.4.2.1. Selección de protecciones en los circuitos de tomacorrientes oficinas, baños y cambiadores.

Para estos se colocara un interruptor termomagnéticos, el cual tienen las siguientes características:

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 134 de 163

Interruptores automáticos C60N curvas B, C y D

	6000 A - IE	C 898 - 10kA	- IEC 947	7.2
	1 polo			
1 polo protegido	In Referencias			
Ancho de paso en 9mm: 2	(A)	cur∨a B	curva C	curva D
en shin. 2	0,5		24067	
	1	24045	24395	24625
	2	24046	24396	24626
	3	24047	24397	24627
	4	24048	24398	24628
1	6	24049	24399	24629
	10	24050	24401	24630
	16	24051	24403	24632

Verificación de los que los circuitos están protegidos

 $lp \le ln \le lc$

Ip=10A

In=6A

Ic=13A

 $1,76A \le 6A \le 13A$ → se cumple

If ≤ 1,45.Ic Ic.1,45=18,85A

Como In es \leq 32A se busca de la curva de disparo "C" la corriente If para 60 minutos, siendo If \leq 1,45In=8,7A

8,7A≤ 18,85A

Como vemos se verifica las dos condiciones.

7.4.2.2. Selección de protecciones en los circuitos de tomacorrientes nave1 A - B y Nave 2 A - B.

Para estos se colocara un interruptor termomagnéticos, el cual tienen las siguientes características:

4 polos protegidos Ancho de paso en 9mm: 8

4 polos			
In	Reference	cias	
(A)	curva B	curva C	curva D
0,5		24070	500000000000000000000000000000000000000
1	24097	24357	24681
2	24098	24358	24682
3	24099	24359	24683
4	24100	24360	24684
6	24101	24361	24685
10	24102	24362	24686
16	24103	24363	24688
20	24104	24364	24689

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 135 de 163

Verificación de los que los circuitos están protegidos

 $lp \le ln \le lc$

Ip=16A

In=16A

Ic=20A

 $16A \le 16A \le 20A$ → se cumple

If ≤ 1,45.Ic

Ic.20=29A

Como In es \leq 32A se busca de la curva de disparo "C" la corriente If para 60 minutos, siendo If \leq 1,45In=A

23,2A≤ 29A

Como vemos se verifica las dos condiciones.

7.4.2.3. Selección de protecciones en los circuitos de los compresores.

Se seleccionaron como ya se vio anteriormente dos compresores con las siguientes características:

Marca: BTA

Modelo: LA274222.6

Características: 5,5hp - 300 Lts. - Trifásico

 $i_{compresor} = 8,33A$

Para proteger estos se colocarán un interruptor guardamotor para cada uno, el cual tienen las siguientes características:

GV2ME + LC1K06...

Coordinación tipo 1 - 400V

Motor Potencia	Guardamotor Referencia	Regulación	Contactor Referencia	lq
kW		Α		kA
0,37	GV2ME05	0,631	LC1K06/LC1D09	50
0,55	GV2ME06	11,6	LC1K06/LC1D09	50
0,75	GV2ME07	1,62,5	LC1K06/LC1D09	50
1,1	GV2ME08	2,54	LC1K06/LC1D09	50
1,5	GV2ME08	2,54	LC1K06/LC1D09	50
2,2	GV2ME10	46,3	LC1K06/LC1D09	50
3	GV2ME14	610	LC1K09/LC1D09	50
4	GV2ME14	610	LC1K09/LC1D09	50
5,5	GV2ME16	914	LC1K12/LC1D12	15
7,5	GV2ME20	1318	LC1K16/LC1D18	15

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 136 de 163

7.4.3. Selección de protecciones para los tableros.

7.4.3.1. Selección de las protecciones diferenciales para cada tablero.

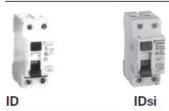
Se selecciona dos interruptores diferenciales para cada tablero. Los cuales son:

Tablero general TG

Dos interruptores tetrapolares de 40A,

Tablero seccional TS1

Un interruptores tetrapolares de 40A, Un interruptores tetrapolares de 25A,

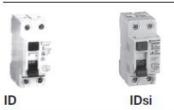

<u>Tablero seccional TS1</u>

Dos interruptores tetrapolares de 40A, Dos interruptores tetrapolares de 250A,

Los cuales vemos a continuación:

(Ver Anexo I, Diagramas unifilares PE03 – PE04 – PE05)

Interruptores diferenciales gama ID/IDsi IEC1008


Interruptores diferenciales "ID" (Clase AC)

Interruptores diferenciales "ID" (Clase AC)

Nº Polos	Corriente nominal (A)	Sensibilidad (mA)	Referencias
2	25	10	16200
2	25	30	16201
2	25	300	16202
2	40	30	16204
2	40	300	16206
2	63	30	16208
2	63	300	16210
2 2 2	80	30	16212
2	80	300	16214
4	25	30	16251
4	25	300	16252
4	40	30	16254
4	40	300	16256
	63	30	16258
4 4	63	300	16260
4	80	300	16263

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 138 de 163

Interruptores diferenciales gama ID/IDsi IEC1008

Interruptores diferenciales "ID" (Clase AC)

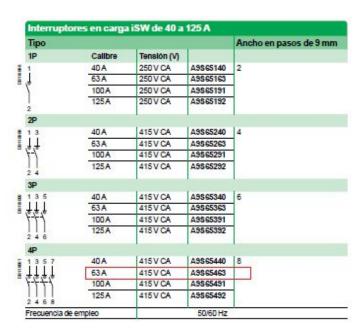
Interruptores diferenciales "ID" (Clase AC)

Nº Polos	Corriente nominal (A)	Sensibilidad (mA)	Referencias
2	25	10	16200
2	25	30	16201
2	25	300	16202
2	40	30	16204
2	40	300	16206
2 2 2 2	63	30	16208
2	63	300	16210
2	80	30	16212
2	80	300	16214
4	25	30	16251
4	25	300	16252
4	40	30	16254

7.4.3.2. Selección de interruptores en carga de cortes para cada uno de los tableros Secundarios

Para el tablero secundario TS1, como la suma de las corrientes aguas abajo es igual a 43,85A, el interruptor seleccionado es de 63A de corriente.

(Ver anexo I, diagrama unifilar)


(Ver anexo V, Tablas de Microsof Excel, circuitos eléctricos)

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 139 de 163

Interruptores en carga iSW

(continuación) Mando

Para el tablero secundario TS2, como la suma de las corrientes aguas abajo es igual a 34,33A, el interruptor seleccionado es de 40A de corriente.

Mando

Tipo				Ancho en pasos de 9 mm
1P	Calibre	Tensión (V)		
1	40 A	250 V CA	A9865140	2
1	63 A	250 V CA	A9865163	
1	100A	250 V CA	A9865191	
2	125A	250 V CA	A9865192	1
2P		200000000000000000000000000000000000000		1000
1 3	40 A	415 V CA	A9865240	4
11	63.A	415 V CA	A9865263	
1-1	100A	415 V CA	A9865291	
2 4	125 A	415 V CA	A9865292	1
3P				1
1 3 5	40 A	415 V CA	A3\$65340	6
###	63 A	415 V CA	A9865363	
177	100A	415 V CA	A9865391	1
246	125A	415 V CA	A9865392	1
4P	-			
1 3 5 7	40 A	415 V CA	A9\$65440	8
49999	63.A	415 V CA	A9865463	
1111	100A	415 V CA	A9865491	
2468	125A	415 V CA	A9865492	1
Frequencia d	le empleo	10.	50/60 Hz	

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 140 de 163

7.4.3.3. Selección de interruptor general para TG.

Para la protección del tablero general seleccionamos un interruptor automático NG125N, para lo cual sumamos todas las corrientes aguas abajo y consideramos un factor de simultaneidad de 0,8 el valor de la corriente total es de 113,7A de corriente. Por ello se selecciona un interruptor tetrapolar, curva c, de 125A de corriente máxima.

Interruptores automáticos NG125N

Protección termomagnética de circuitos y receptores

IEC 60947-2 Curvas B, C y D

- Los NG125N son interruptores automáticos que combinan las siguientes funciones:
- Protección de circuitos contra corrientes de cortocircuito.
- Protección de circuitos contra corrientes de sobrecarga.
 Apto al seccionamiento en el sector industrial según la norma IEC 60947-2.
- · Señalización de defecto mediante un indicador mecánico de color rojo situado en la parte frontal del interruptor automático.

								_
Poder de corte (Icu)	según	IEC 60	947-2					Poder de
	Tensi	ón (Ue)						corte de
F/F (2P, 3P, 4P)	-	-	220 a 240 V	-	380 a 415 V	440 V	500 V	servicio (lcs)
F/N (1P)	110 a 130 V	220 a 240 V	-	380 a 415 V	-	_	-	
Calibre (In) 10 a 125 A	50 kA	25 kA	50 kA	6 kA(1)	25 kA	20 kA	10 kA	75% de lou

(1) Poder de corte con 1 polo en sistema de IT neutro aislado (en caso de un doble defecto).

Referencias

Interruptor automátic	0 NG125N							
Tipo	1P	2P	3P			4P		
	* 25.	**	* * *	>		***	*	
Auxiliares	Indicación	y disparo remot	os. Dispositivo	de protección d	ferencial Vigi N	3125		
Calibre (In)	Curva	Curva	Curva			Curva		
	С	c	В	lc.	D	В	c	D
10 A	18610	18621	-	18632		-	18649	-
16A	18611	18622	-	18633	-	-	18650	-
A 05	18612	18623	-	18634	-	-	18651	-
25 A	18613	18624	-	18635	- 1	-	18652	
32 A	18614	18625	-	18636	-	-	18653	-
40 A	18615	18626	-	18637	-	-	18654	-
50 A	18616	18627	-	18638	-	-	18655	-
63 A	18617	18628	-	18639	-		18656	-
00 A	18618	18629	18663	18640	18669	18666	18658	18672
100 A	-	-	18664	18642	18670	18667	18660	18673
125 A	-	-	18665	18644	18671	18668	18662	18674
Ancho en módulos de 9 mm	3	6	9			12		

(Ver anexo I, diagrama unifilar)

(Ver anexo V, Tablas de Microsof Excel, circuitos eléctricos)

Instalación Neumática 8.

Para el cálculo de la instalación neumática de la planta, se realizó un informe detallado de todas las herramientas utilizadas en planta que requieren de aire comprimido.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 141 de 163

8.1. Listado por zona de trabajo

Zona 1: Depósito de Moldes (no tiene consumo)

Zona 2: Limpieza

> Pistola de aire

Consumo: q = 250 l/m

Zona 3: Colocación de desmoldante

> Pistola de aire

o Consumo: q = 250 l/m

Zona 4: Colocación de gel-coat

Pistola de aire

o Consumo: q = 250 l/m

Maguina Gelcotera

Consumo: q = 100 l/m

Zona 5: Laminado

> Pistola de aire

o Consumo: q = 250 l/m

Maquina laminadora (ver anexo)

Consumo: q = 675 l/m

Zona 6: Curado

Pistola de aire

Consumo: q = 250 l/m

Zona 7: Desmolde (no tiene consumo)

Zona 8: Quita de Rebaba, Masillado y Lijado

> Pistola de aire

Consumo: q = 250 l/m

Lijadoras (Dos)

o Consumo: q = 380 l/m

> Amoladora

o Consumo: q = 350 l/m

Cortadora

Consumo: q = 100 l/m

Zona 9: Sala de Pintado

> Pistola de pintar

Consumo: q = 300 l/m

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 142 de 163

Zona 10: Pulido y Lustrado

Pistola de aire

o Consumo: q = 250 l/m

Pulidora eje extendido

o Consumo: q = 300 l/m

Pulidora angular

Consumo: q = 260 l/m

Zona 11: Depósito Producto Terminado

> Pistola de aire

o Consumo: q = 250 l/m

Zona 12: Fabricación de Soportes

Pistola de aire

Consumo: q = 250 l/m

Zona 13: Colocación de Deflectores

> Pistola de aire

Consumo: q = 250 l/m

Llave crique

Consumo: q = 110 l/m

Remachadora

Consumo: q = 150 l/m

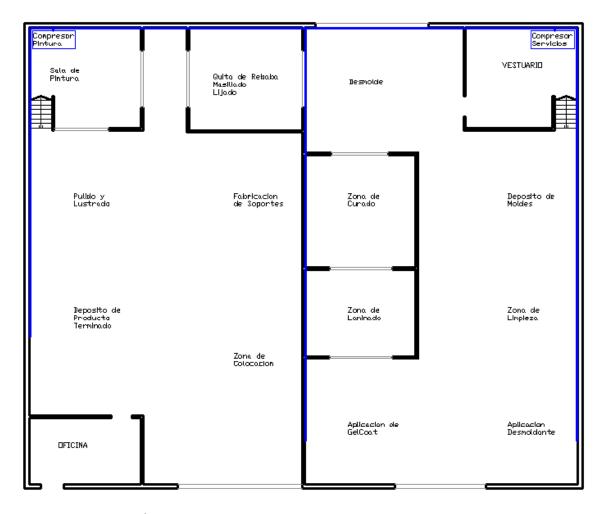
Llave impacto

Consumo: q = 75 l/m

8.2. Estaciones compresoras

La planta contará con dos estaciones de aire comprimido, una para el abastecimiento de herramientas neumáticas y otra para la cabina de pintura.

La estación compresora 1 abastecerá de aire a presión a la cabina de pintura.


La estación compresora 2 abastecerá los diferentes sectores de la nave en los cuales se haga uso de herramientas neumáticas.

Ambas estaciones compresoras contarán con:

- Compresor
- Refrigerador posterior
- Depósito

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 143 de 163

8.3. Croquis de la instalación de aire comprimido

8.3.1. Distribución

En planos PLA01 y PLA02 se representa en forma esquemática la disposición de las redes de aire comprimido y los distintos puntos de consumo.(ver anexo I)

- Red n° 1 Comprende el tramo 1-A
- Red n° 2
 Comprende el tramo 2-B, B-C y B-D

Para abastecer los puntos de consumos de aire comprimido de la planta (red nº 2), se dispondrá de una red abierta la cual una será ramificada en tres tramos y aérea en su totalidad.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 144 de 163

8.3.2. Disposición de las instalaciones

Como las estaciones no llevarán secador de aire a la salida de los compresores y solo llevarán refrigerador posterior, habrá condensados en la red por lo que habrá que eliminarlo en el recorrido de la red.

Las tuberías se instalarán cumpliendo las siguientes reglas:

- Pendiente en dirección de flujo 2 a 3 %
- Los extremos de las instalaciones siempre deben ser para extracción de condensado
- Cuando se precise salvar alturas, por causa de la pendiente, cuyo tendido resulte extremadamente largo, se dispondrá de un colector.
- Se admitirá una caída de presión no superior al 2% de la presión del compresor en el punto de consumo.

A continuación, se describen las características a tener en cuenta al momento de la planificación y el montaje de las redes y los distintos puntos de consumo.

8.3.3. Tuberías

Las tuberías primarias como las secundarias serán de acero al carbono, preferentemente con uniones soldadas o en sus defectos roscadas. Para las líneas de servicio se utilizarán mangueras flexibles de goma con refuerzo de nylon o poliéster. El color de las tuberías de aire comprimido es azul moderado.

8.3.4. Bajadas

Las tomas de aire para los consumos se realizarán captando de la red siempre desde el lado superior. De esta manera evitamos el ingreso del condensado que podría hallarse en la parte inferior.

Además deberán poseer:

Válvula de paso de acción rápida

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 145 de 163

• Conexión con la línea de servicio mediante acople rápido

• En las herramientas neumáticas, se dispondrá de unidades F-R-L:

Marca: MICRO

Modelo: FRL-4-G04-FRL Drenador Manual 12 BSP

• En las pistolas neumáticas, se dispondrá de unidades F-R:

Marca: MICRO

Modelo: FR-4-G04-FR Drenador Manual 12 BSP

• Colector de condensado en la parte inferior y purga manual.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 146 de 163

Las unidades compresoras abastecerá los consumos de toda la red, constará de:

- Compresor
- Refrigerador posterior
- Depósito

8.4. Cálculo de las redes de aire comprimido

Red 1:

Al alimentar la red 1 solamente la cabina de pintura solo se realizará una bajada con purga y dos conexiones de acople rápido.

Red 2:

Calculo del caudal total necesario para alimentar los diferentes sectores, teniendo en cuenta el factor de simultaneidad para cada sector.

Cálculo de cañerías

Coeficientes de simultanead:

 $k_{herramienta} = 0,4$

 $k_{pintura} = 0.6$

 $k_{colocaci\'on} = 0,2$

Caudales:

$$Q_{zona} = \sum Q_{herramienta} . k$$

$$Q_{z1} = 0$$

$$Q_{z2} = 250 l/_{min} .0,4 = 100 l/_{min}$$

$$Q_{z3} = 250 l/_{min} .0.4 = 100 l/_{min}$$

$$Q_{z4} = (250 + 100) l/_{min} .0,4 = 140 l/_{min}$$

$$Q_{z5} = (250.0,4 + 675.0,6) l/_{min} = 505 l/_{min}$$

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 147 de 163

$$Q_{z6} = 250 l/_{min} .0,4 = 100 l/_{min}$$

$$Q_{z7} = 0$$

$$Q_{z8} = (250 + 380 + 350 + 100) l/_{min} .0,4 = 432 l/_{min}$$

$$Q_{z9} = 300 \ l/_{min} \ .0,6 = 180 \ l/_{min}$$

$$Q_{z10} = (250 + 300 + 260) l/_{min} .0,4 = 324 l/_{min}$$

$$Q_{z11} = 250 l/_{min} .0.4 = 100 l/_{min}$$

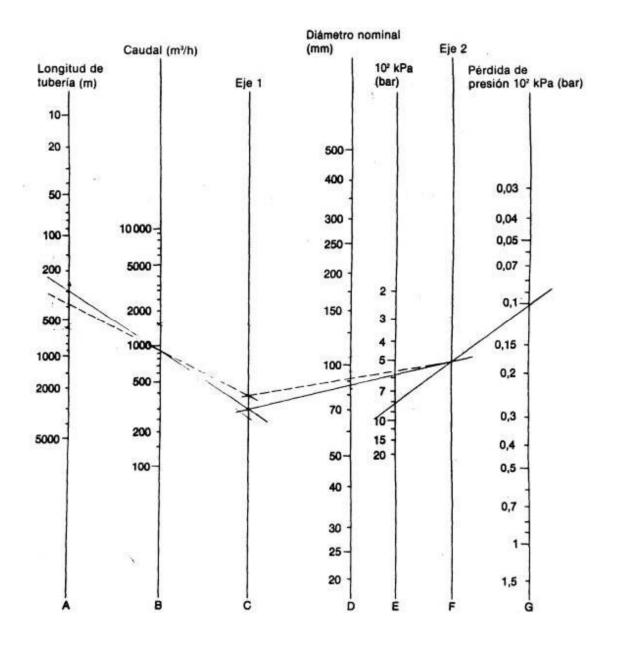
$$Q_{z12} = 250 \ l/_{min} .0,4 = 100 \ l/_{min}$$

$$Q_{z13} = (250 + 110 + 150 + 75) l/_{min} .0,2 = 117 l/_{min}$$

$$Q_{total} = \sum Q_{zi} = 2198 \ l/min$$

Longitud de Tramos:

L _{A1} = 16 m	L _B = 11 m	L _{C1} = 7,5 m	L _{D1} = 2,5 m
L _{A2} = 5 m		L _{C2} = 2,5 m	L _{D2} = 8 m
		L _{C3} = 2,5 m	L _{D3} = 10 m
		L _{C4} = 5 m	$L_{D4} = 5 \text{ m}$


Caída de presión propuesta:

$$\Delta P_{3\%} = 0.21 Bar \cong 21 KPa$$

 $\Delta P_{1.5\%} = 0.105 Bar \cong 10.5 KPa$

8.4.1. Determinación del diámetro de a cañería

Con los datos anteriores se determinan los diámetros de las cañerías utilizando el nomograma expuesto a continuación.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 148 de 163

Diámetros seleccionados para los tramos.

D _{A1} = 1/2"	D _B = 1'1/2"	D _{C1} = 1/2"	D _{D1} = 3/4"
$D_{A2} = 1/2"$		$D_{C2} = 3/4$ "	$D_{D2} = 1/2$ "
		D _{C3} = 1/2"	$D_{D3} = 1/2"$
		D _{C4} = 1/2"	D _{D4} = 1/2"

Longitud equivalente de Tramos:

Reducción = 5 ϕ

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 149 de 163

$$L_{A1} = 16 \text{ m} + 1 \text{ T} + 1 \text{ codo} = 16,45 \text{ m}$$

 $L_{A2} = 5 \text{ m} + 1 \text{ T}_{at} + 2 \text{ codos} = 5,57 \text{ m}$

$$L_B = 11 \text{ m} = 11 \text{ m}$$

$$L_{C1} = 7.5 \text{ m} + 1 \text{ T} = 7.7 \text{ m}$$

$$L_{C2} = 2.5 \text{ m} + 1 T_{at} + 1 T + 1 \text{ codo} = 3.26 \text{ m}$$

$$L_{C3} = 2.5 \text{ m} + 1 T_{at} + 1 T + 1 \text{ codo} = 3 \text{ m}$$

$$L_{C4} = 5 \text{ m} + 1 T_{at} + 2 \text{ codos} = 5,57 \text{ m}$$

$$L_{D1} = 2.5 \text{ m} + 1 \text{ T}_{at} + 1 \text{ T} + 1 \text{ codo} = 3.26 \text{ m}$$

$$L_{D2} = 8 \text{ m} + 1 \text{ T} + 1 \text{ codo} = 8,45 \text{ m}$$

$$L_{D3} = 10 \text{ m} + 1 T_{at} + 3 \text{ codos} = 10,83 \text{ m}$$

$$L_{D4} = 5 \text{ m} + 1 T_{at} + 1 T + 1 \text{ codo} = 5,5 \text{ m}$$

Según la norma se recomienda una velocidad máxima de 10 m/s para esta configuración y con esta velocidad se realiza a verificación de diámetro de tuberías por velocidad.

		Diámetro Inmediato Superior	Diámetro Propuesto
$A_{A1} = \frac{3333,33 \text{ cm}^3/\text{s}}{10.000 \text{ cm/s}} = 0,3333 \text{ cm}^2$	$D_{A1} = \sqrt{\frac{4.0,3333}{\pi}} = 0,65cm$	$D_{A1} = 3/8$ "	$D_{A1}=1/2"$
$A_{A2} = \frac{\frac{1666,66 cm^3/s}{10.000 cm/s}}{0,1666 cm^2} = 0,1666 cm^2$	$D_{A2} = \sqrt{\frac{4.0,1666}{\pi}} = 0,46cm$	$D_{A2}=1/4$ "	$D_{A2} = 1/2$ "
$A_B = \frac{74000 \ cm^3/s}{10.000 \ cm/s} = 7,4 \ cm^2$	$D_B = \sqrt{\frac{4.7,4}{\pi}} = 3,07cm$	$D_B = 1'1/4"$	$D_B = 1'1/2"$
$A_{C1} = \frac{11600 \ cm^3/s}{10.000 \ cm/s} = 1,16 \ cm^2$	$D_{C1} = \sqrt{\frac{4.1,16}{\pi}} = 1,21cm$	$D_{C1} = 1/2$ "	$D_{C1} = 1/2$ "
$A_{C2} = \frac{14360 \ cm^3/s}{10.000 \ cm/s} = 1,436 \ cm^2$	$D_{C2} = \sqrt{\frac{4.1,436}{\pi}} =$	$D_{C2} = 5/8$ "	$D_{C2} = 3/4$ "

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 150 de 163

	1,35 <i>cm</i>		
$A_{C3} = \frac{10700 \ cm^3/s}{10.000 \ cm/s} = 1,07 \ cm^2$	$D_{C3} = \sqrt{\frac{4.1,07}{\pi}} = 1,16cm$	$D_{C3} = 1/4$ "	$D_{C3} = 1/2$ "
$A_{C4} = \frac{2333 \ cm^3/s}{10.000 \ cm/s} = 0,2333 \ cm^2$	$D_{C4} = \sqrt{\frac{4.0,2333}{\pi}} = 0,545cm$	$D_{C4} = 1/4$ "	$D_{C4} = 1/2$ "
$A_{D1} = \frac{17260 \ cm^3/s}{10.000 \ cm/s} = 1,73 \ cm^2$	$D_{D1} = \sqrt{\frac{4.1,73}{\pi}} = 1,48cm$	$D_{D1} = 5/8$ "	$D_{D1} = 3/4$ "
$A_{D2} = \frac{10000 \ cm^3/s}{10.000 \ cm/s} = 1 \ cm^2$	$D_{D2} = \sqrt{\frac{4.1}{\pi}} = 1,13cm$	$D_{D2} = 1/2$ "	$D_{D2}=1/2"$
$A_{D3} = \frac{5400 \ cm^3/s}{10.000 \ cm/s} = 0,54 \ cm^2$	$D_{D3} = \sqrt{\frac{4.0,54}{\pi}} = 0,83cm$	$D_{D3} = 3/8$ "	$D_{D3} = 1/2$ "
$A_{D4} = \frac{2333 cm^3/s}{10.000 cm/s} = 0,233 cm^2$	$D_{D4} = \sqrt{\frac{4.0,23}{\pi}} = 0,545cm$	$D_{D4}=1/4"$	$D_{D4} = 1/2$ "

8.5. Selección de Compresores

Se seleccionarán dos compresores iguales del 100% de la capacidad instalada, con el fin de, en caso de avería o mantenimiento de uno de ellos, poder abastecer ambas zonas con un solo equipo.

Consumo de herramientas = 2 m³/min

Para selección de compresor:

Presión de trabajo = 7bar – capacidad = 14 m³/min

Tener en cuenta el análisis de costos.

Tomar el costo de la energía como 0,08 \$/Kwh

A la hora de seleccionar un compresor tenemos en cuenta;

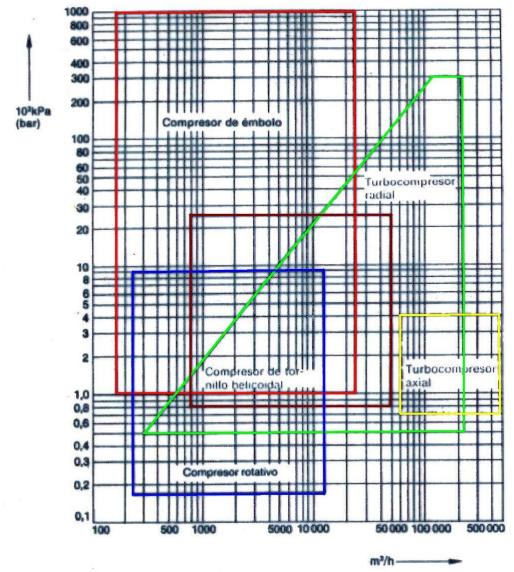
- Un caudal adicional para posibles ampliaciones del sistema neumático.
- Además, un porcentaje de pérdidas por fuga.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 151 de 163

 $Q_{ampliacion} = 0.5 \text{ m}^3/\text{min}$

Porcentaje de Perdidas = 10%

Con los que nos queda:


$$Q_{compresor} = (Q_{instalación} + Q_{ampliación}) \cdot %_{perdidas}$$

$$Q_{compresor} = (2 + 0.5) \text{ m}^3/\text{min} \cdot 1.1 = 2.75 \text{ m}^3/\text{min}$$

$$Q_{compresor} = 165 \text{ m}^3/\text{h}$$

En el grafico siguiente, con la presión de trabajo y el caudal del compresor podemos seleccionar el tipo de compresor que mayor se ajuste a la necesidad de la instalación.

Figura 14: Diagrama de caudal

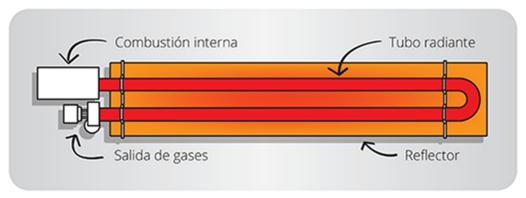
F	Preparó:	Revisó:	
F	Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 152 de 163

Si observamos el grafico el compresor debe ser de Embolo.

EL COMPRESOR SELECCIONADO SERÁ:

Marca: BTA

Modelo: LA274222.6


Características: 5,5hp - 300 Lts. - Trifásico

9. Instalación de Gas

9.1. Artefactos seleccionados

La calefacción de la cabina de curado se realizará por medio de dos tubos radiantes de gas natural seleccionados para tal fin de la marca UBERTA modelo MSU3M de 3m de largo con un consumo $Q = 1,44 \text{ m}^3/\text{h}$ cada uno y presión de alimentación p = 0,2 bar.

La calefacción por tubos radiantes se trata de un quemador de gas de bajo consumo que calienta el interior de un tubo mediante una llama. Este tubo está hecho de una aleación especial que tiene propiedades tales como la transmisión del calor, dilatación reducida, y sobre todo y más importante una gran capacidad de irradiar calor. Gracias a este sencillo mecanismo el tubo radiante se calienta a temperaturas cercanas a los 350ºC de media.

La selección se realizó a través de catálogos ver en anexo V.

Un tubo radiante básicamente se compone de cuatro elementos básicos:

Tubo radiante: Es el elemento que se calienta gracias a la llama de gas y que irradia el calor.

El reflector: Este elemento ayuda al tubo radiante a irradiar toda la energía.

Mecanismo de interna: Es el elemento que realiza la combustión de forma totalmente interna.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 153 de 163

Captación y extracción de aire: Se trata del sistema de conducciones que permite captar el aire del exterior y expulsarlo una vez ha sido utilizado para la combustión.

La cabina de pintura seleccionada requiere la provisión de 1,5 m³/h de gas natural a 0,2 bar.

Los planos de la instalación de gas se encuentran en el anexo I. (ver planos PLG01-PLG02).

9.2. Consideraciones de diseño

Planta de regulación y medición

La instalación en cuestión, consta de una planta de regulación de medición y una línea que alimenta el consumo de la cabina de pintura y la calefacción de la cabina de curado. Toda la instalación cumple con la normativa vigente.

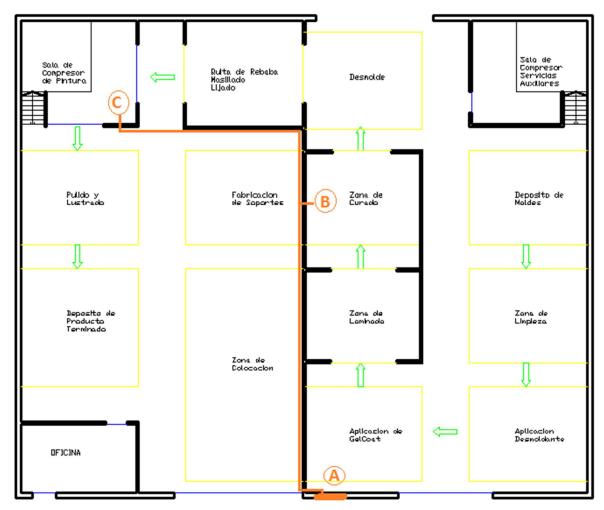
En el punto de entrega, GASNEA entrega gas a alta presión (4 kg/cm2) y en el punto de consumo necesitamos tener baja presión (0.020 kg/cm2). Es por esto que se necesita de una planta de regulación.

Para cumplir con las normas de seguridad, la PRM debe tener una caseta ya que la distancia desde ésta hasta el punto de consumo más cercano es menor a 15m (distancia mínima de seguridad).

La PRM contará con los siguientes elementos:

Válvula de bloqueo general de entrada (1/4 de vuelta, accionamiento manual)
Filtro 80 micrones
Regulador de presión con sus válvulas de bloqueo
Manómetros con sus válvulas de bloqueo
Válvulas de seguridad
Sistema de medición de caudales

Línea interna:


La instalación de la línea interna será aérea, por lo que se opta por el uso de tuberías de acero con tratamiento epoxi anticorrosivo.

Selección de válvulas y regulador de presión:

Regulador de presión de la PRM: De catálogo EQA seleccionamos un regulador modelo EQA722

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 154 de 163

9.3. Calculo de las dimensiones de tuberías

(Ver anexo I planos PLG01- PLG02)

LONGITUD DE TUBERIAS:

Tramo AB = 15,75 m + 2 codos + 1 T

Tramo AC = 26,75 m + 4 codos + 2 T + 1 Tat

9.3.1. Bases de cálculo

Velocidad: La velocidad de la circulación del gas no deberá sobrepasar los 20 m/s, en ningún caso.

Perdida de carga: En acometida interior será tal que garantice el correcto funcionamiento de los elementos de la estación de regulación y medida, de forma que se pueda garantizar el caudal necesario para el buen funcionamiento de la instalación. Una buena práctica es limitarla a una caída de presión no superior al 5% de la presión efectiva mínima garantizada, en llave de acometida por la compañía distribuidora.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 155 de 163

En líneas de distribución interior será tal que garantice el correcto funcionamiento de los grupos de regulación de presión, en condiciones de presión y caudal. Como parámetro orientativo intentaremos que la caída de presión no sobrepase en un 10%, la presión efectiva de la de salida de la Estación de Regulación y Medida.

A la salida de grupos de regulación de presión, tendremos que garantizar a entrada de de las electroválvulas de los quemadores la presión que nos pida el fabricante, o agente de puesta en servicio de los aparatos.

Espesores de tubería: Los espesores teóricos de las tuberías se calcularán según los criterios indicados en la norma NAG201.

9.3.2. Diámetro de la tubería

El diámetro de las tuberías lo extraemos de la siguiente tabla:

GAS NATURAL

Caudales en litros de gas por hora, para diferentes diámetros y longitudes.

Densidad: 0,65

Caída de presión:10 mm

	TABLA: C	audal en litro	os / horas		TA	ABLA: Cau	idal en litro	s / horas	
	0	iámetros de	la cañería e	en	500	Diá	metros de	la cañerí	x en
Longitud		m	m		Longitud		m	m	
Cañería	1992000	0.00000000	0.000		Cañería		T150 00000	10000000	
m	Ø 20	Ø 25	Ø 32	Ø 40	m	Ø 20	Ø 25	Ø 32	Ø 40
1	5.594	12.377	27.244	53.580	55	754	1.669	3.674	7.226
2	3.956	8.852	19.264	37.892	60	722	1.598	3.517	6.918
3	3.230	7.146	15.729	30.939	65	694	1.535	3.379	6.647
4	2.797	6.188	13.622	26.794	70	669	1.479	3.256	6.405
5	2.502	5.535	12.184	23.965	75	646	1.384	3.146	6.188
6	2.284	5.053	11.122	21.877	80	625	1.342	3.046	5.991
7	2.114	4.678	10.297	20.254	85	607	1.342	2.955	5.812
8	1.978	4.376	9.632	18.964	90	590	1.305	2.872	5.649
9	1.865	4.126	9.081	17.863	95	574	1.270	2.795	5.498
10	1.769	3.914	8.615	16.946	100	559	1.238	2.724	5.359
12	1.615	3.573	7.865	15.469	105	546	1.208	2.659	5.230
14	1.495	3.308	7.281	14.322	110	533	1.180	2.598	5.109
16	1.399	3.094	6.811	13.397	115	522	1.254	2.541	4.997
18	1.319	2.917	6.421	12.631	120	511	1.130	2.487	4.892
20	1.251	2.768	6.092	11.983	125	500	1.107	2.437	4.793
22	1.193	2.639	5.088	11.425	130	491	1.086	2.389	4.700
24	1.142	2.526	5.561	10.939	135	481	1.065	2.345	4.612
26	1.097	2.427	5.343	10.509	140	473	1.046	2.303	4.529
28	1.057	2.339	5.149	10.127	145	465	1.028	2.262	4.450
30	1.021	2.260	4.974	9.784	150	457	1.011	2.224	4.375
32	989	2.188	4.816	9.473	155	449	994	2.188	4.304
34	959	2.123	4.672	9.190	160	442	978	2.154	4.236
36	932	2.063	4.541	8.931	165	436	964	2.121	4.172
38	908	2.008	4.420	8.693	170	429	949	2.090	4.110
40	885	1.957	4.308	8.473	175	423	936	2.059	4.051
42	863	1.910	4.204	8.269	180	417	923	2.031	3.994
44	843	1.866	4.107	8.079	185	411	910	2.003	3.940
46	825	1.825	4.017	7.901	190	406	898	1.976	3.888
48	807	1.786	3.932	7.735	195	401	886	1.951	3.837
50	791	1.750	3.853	7.578	200	396	875	1.926	3.789

 $D_{AB} = 1 \frac{1}{4}$ "

 $D_{BC} = 1"$

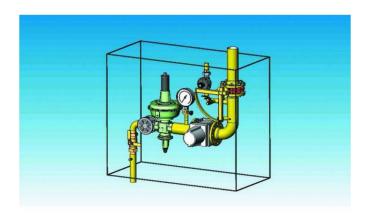
Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 156 de 163

Para verificar estos diámetros utilizaremos la Fórmula de Renouard, simplificada, para cualquier rango de presión.

$$D = \sqrt[4.82]{\frac{48600 \times \delta \times Lc \times Q^{1,82}}{\Delta P^2}}$$

$$D_{AB} = \sqrt[4.82]{\frac{48600 \times 0.06 \text{ m}^3/_{\text{kg}} \times 18 \text{ m} \times 4.32 \text{m}^3/_{\text{h}}^{1.82}}{0.27}} = 43 \text{ mm} \approx 1 \text{ } \text{\%}''$$

$$D_{AC} = \sqrt[4.82]{\frac{48600 \times 0.06 \text{ m}^3/_{\text{kg}} \times 30 \text{ m} \times 4.32 \text{m}^3/_{\text{h}}^{1.82}}{0.27}} = 26 \text{ mm} \approx 1"$$


Verifica

9.4. Planta de regulación y medición

En el punto de entrega, GASNEA entrega gas a alta presión (4 kg/cm2) y en el punto de consumo necesitamos tener baja presión (0.020 kg/cm2).

Regulador de presión seleccionado de la PRM: Marca EQA modelo EQA722.

La planta de regulación y medición está formada por: toma de presión tipo Peterson, válvula de entrada al armario, filtro, regulador con válvula VIS de máxima, válvula VIS de mínima, válvula salida armario, válvula VAS de escape, manómetro precisión CL 0,5 o CL1 válvula de 3 vías para contrastación manómetro patrón, termómetro de capilla y toma presión tipo oliva.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 157 de 163

9.5. Evacuación de los Productos de Combustión

Los gases y los humos originados por la combustión, se canalizan al exterior del local a través de conductos de evacuación de gases.

Los diámetros de los conductos de evacuación de gases, vienen dados por los fabricantes correspondientes de los aparatos.

Conductos metálicos de chapa galvanizada de 300 mm de diámetro.

10. Seguridad e Higiene

De acuerdo a la Legislación vigente (Ley 19587, aprobada por el Decreto 351/79) se llevarán a cabo las siguientes mejoras:

10.1. Ventilación

Teniendo en cuenta que el factor de ocupación, cuyo trabajo es de actividad moderada (Ventilación mínima requerida en función del número de ocupantes), y el volumen del local, la ventilación es más que satisfactoria, no necesitando ningún tipo e inyector de aire.

Pero teniendo en cuenta los Art. 67 y Art. 68, Decreto 351/79, y la producción de polvillo de lijado, en la cabina de pre terminación la prioridad a seguir es:

Proveer a los trabajadores de barbijo, estos se deberán emplear cuando estén utilizando lijadoras.

También teniendo en cuenta los Art. 69 y Art. 70, Decreto 351/79, donde existen sistemas de extracción:

Colocar campanas de extracción en las zonas de lijado, evitando así la suspensión en el aire de polvillo de lijado. Donde dicha extracción será instalada de modo que no produzcan contaminación ambiental durante las operaciones de descarga o limpieza.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 158 de 163

Evitar la acumulación de dicho polvillo y partículas de polvo de mayor tamaño que no haya sido capturado por las campanas, o sea el que se encuentra en el piso, retirándolo diariamente. Lo mejor en este caso sería contar con una aspiradora para evitar el barrido y luego colocarlo en bolsas para su posterior desecho.

10.2. Colores de seguridad

- Pintar de verde claro el plano de trabajo de las máquinas.
- Pintar de azul los interruptores de las máquinas.
- > Delimitar con lineas amarillas los sectores de trabajo.
- Demarcar los pasillos de circulación con líneas de color blanco, como así también las zonas de almacenamiento.

10.3. Señalización, cartelería e indicadores

Colocar carteles de salida de emergencia, ubicados en la parte superior de cada salida.

Colocar señalización correcta de los extintores según su clase de fuego.

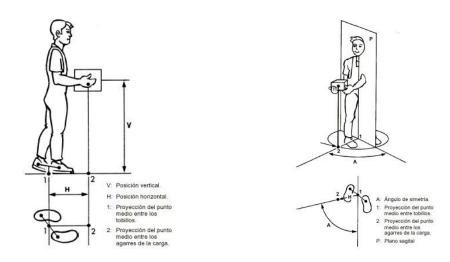
Colocar carteles de riesgo eléctrico en tableros.

Colocar carteles de obligación de usar protector auditivo.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 159 de 163

Colocar carteles de obligación de utilizar barbijo en sectores de lijado.

> Colocar carteles de prohibido fumar.



- Colocar carteles a las máquinas:
 - No quitar resguardos
 - No realizar reparaciones con la maquina en funcionamiento.
- Pintar las máquinas con sus respectivos colores de seguridad.

10.4. Levantamiento manual de cargas:

El plan de mejoras a aplicar será el de capacitar a los empleados, para que se realicen los levantamientos de la mejor manera y así evitar problemas en la columna vertebral. Proveer de faja lumbar y efectuar los descansos periódicos.

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 160 de 163

10.5. Orden y limpieza:

- Correcto uso y guardado de las herramientas de mano en su derivado tablero
- Despejar de las vías de circulación toda clase de obstáculos
- ➤ Retirar todos los días la acumulación de polvillo de lijado, para evitar que se desparrame dentro del taller. La forma correcta para su recolección será aspirarlo y colocarlo en bolsas, para luego poder desecharlo controladamente.

10.6. Ruido

- Deberá controlarse el uso de protección auditiva, cada vez que se esté utilizando la maquinaria.
- ➤ Diseñar un lugar adecuado para mantener en forma las condiciones de los protectores.
- ➤ De ser necesario recordar periódicamente e insistentemente la manera y forma de uso de manera explicativa.
- Diminuir el ruido de los compresores alejándolos de la zona de trabajo.

10.7. Protección contra incendios

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 161 de 163

Ya que se dispone de manera improvista y en muy buenas condiciones de cuatro (6) extintores manuales ABC de diez (10) Kg distribuidos adecuadamente no es necesario un plan de mejoras.

10.8. Salida de emergencia

La puerta principal de acceso y la posterior se utilizarán como salida de emergencia, la misma en el estado que se encuentran, se abrirán en el sentido de circulación de la evacuación. La puerta restante no podrá utilizarse debido a que se encuentra cerrada en su mayoría, debido a la cantidad de gente no es necesaria la implementación de otros accesos de emergencias.

Se contará además con un sistema de luces de emergencia, que indiquen dichas salidas, y permitan tener una iluminación en caso de emergencia.

10.9. Elementos de protección personal

- Proveer antejos de seguridad, sobre todo para el uso donde puedan proyectarse partículas ofensivamente.
- Reemplazar el calzado actual por botines de seguridad con punteras de acero.
- Reemplazar protectores auditivos de copa por protectores auditivos en forma de tapón.
- Utilización de guantes de tejido.
- Designar un lugar adecuado para depositar los elementos luego de usarlos, conservando su limpieza.
- Elementos de protección personal para los encargados de pintura y de laminación.

10.10.Instalaciones sanitarias

El baño deberá poseerlas instalaciones mínimas necesarias para cubrir las necesidades de los empleados.

El baño deberá poseer:

- Un (1) inodoro
- > Un (1) lavabo
- Una (1) ducha, con agua fría y caliente.

Colocación de un botiquín, con los elementos de primeros auxilios, el mismo será de color verde y contará como mínimo con los siguientes elementos:

- Gasas
- Algodón
- Apósitos
- > Yodo
- > Tijera
- Jabón
- > Aspirinas
- > Agua oxigenada
- Cinta

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 162 de 163

Etc.

11. Análisis Económico

En el análisis financiero se tuvo en cuenta el monto total de la inversión del proyecto, los costos fijos, costos variables y precio de venta del producto terminado.

Lo que se quiere ver con este análisis es el Umbral de Rentabilidad y la Tasa interna de Retorno de nuestra inversión.

La inversión total suma \$A 854824.00 y es de nuestro interés saber cuánto tiempo llevará recuperar dicha inversión.

Para la base del cálculo se tomó que la fábrica trabaja 43 semanas al año, 5 días a la semana y que produce durante el primer y segundo año 3 deflectores/día, tercer año 4 deflectores/día y a partir del cuarto año producir a máxima capacidad 5 deflectores diarios. Esto está estimado en base a la demanda del mercado y al porcentaje de mercado que vamos a captar.

Mediante publicidad se pretende aumentar de 2% a 4% la cuota del mercado.

Según los resultados de la planilla, se puede ver que la inversión se recupera en poco más de un año y que el negocio tiene una TIR superior al 70%.

DATOS INICIALES							
Empresa/Proyecto			F	ibratex - E-PFC-131	12A		
Inversión inicial	854.824,00						
Costos fijos anuales	150.000,00						
Costo variable unitario	4.700,00						
Precio de venta	6.000,00						
Tasa de inflación anual	20%						
PERIODOS (AÑOS)	0	1	2	3	4	5	6
PRODUCCIÓN / VENTAS							
Capacidad productiva en unidades		645,00	645,00	860,00	1.075,00	1.075,00	1.07
Demanda del mercado en unidades		32.250,00	32.250,00	36.000,00	36.000,00	36.000,00	36.00
Cuota de mecado prevista		2%	2%	3%	4%	4%	
Cuota de mercado en unidades		645,00	645,00	1.080,00	1.440,00	1.440,00	1.44
Ventas en unidades		645,00	645,00	860,00	1.075,00	1.075,00	1.07
ENTRADAS		3.870.000.00	4.644.000.00	7.430.400.00	11.145.600.00	13.374.720.00	16.049.66
Ventas en unidades		645.00	645.00	860.00	1.075.00	1.075.00	1.07
Precio		6.000,00	7.200,00	8.640,00	10.368,00	12.441,60	14.92
SALIDAS	854.824,00	3.181.500,00	3.817.800,00	6.036.480,00	8.989.920,00	10.787.904,00	12.945.48
Inversión	854.824,00						
Costos Fijos		150.000,00	180.000,00	216.000,00	259.200,00	311.040,00	373.24
Costos Variables Unitarios		4.700,00	5.640,00	6.768,00	8.121,60	9.745,92	11.69
Costos Variables Totales		3.031.500,00	3.637.800,00	5.820.480,00	8.730.720,00	10.476.864,00	12.572.23
FLUJOS DE TESORERIA	-854.824,00	688.500,00	826.200,00	1.393.920,00	2.155.680,00	2.586.816,00	3.104.17
	-854.824,00	-166.324,00	659.876,00	2.053.796,00	4.209.476,00	6.796.292,00	9.900.47
JMBRAL DE RENTABILIDAD							
Unidades		115,38	115,38	115,38	115,38	115,38	11
Importe		692.307,69	830.769,23	996.923,08	1.196.307,69	1.435.569,23	1.722.68

(La anterior tabla se puede encontrar en el anexo V, Análisis Económico)

Preparó:	Revisó:	
Pablo Landi/Fernando Taboada/Martín Cergneux	Gustavo Puente 11-2015	Página 163 de 163

Queremos expresar nuestro más sincero agradecimiento a todas aquellas personas que con su ayuda han colaborado en la realización del presente trabajo.

A todos los docentes de esta casa de estudios los cuales nos han brindado sus conocimientos durante éste periodo de estudios.

A nuestros familiares por el apoyo recibido a lo largo de estos años.

Un agradecimiento muy especial merece el ánimo recibido por parte de nuestros amigos.

A todos ellos, muchas gracias.

ANEXOS

ANEXO I PLANOS	
PLO1 – Funcional PLE01 – Potencia Iluminación Planta Baja PLE02 – Potencia Iluminación Planta Alta PLE03 – Unifilar TG PLE04 – Unifilar TS1 PLE05 – Unifilar TS2 PLA01 – Neumática Planta Baja PLA02 – Neumática Planta Alta PLG01 – Gas Planta Baja PLG02 – Gas Planta Alta	
ANEXO II ARCHICAD	
Archivos de Instalación de Programa Archicad 01 – Diseño de la Nave Industrial	
ANEXO III EXCEL	
01 – Explosión del producto 02 – Circuitos Eléctricos	
ANEXO IV DIALUX	
Cálculo de iluminación en programa Dialux	

ANEXO I

PLANOS

PL01 – Funcional

PLE01 – Potencia Iluminación Planta Baja

PLE02 - Potencia Iluminación Planta Alta

PLE03 – Unifilar TG

PLE04 – Unifilar TS1

PLE05 – Unifilar TS2

PLA01 – Neumática Planta Baja

PLA02 - Neumática Planta Alta

PLG01 – Gas Planta Baja

PLG02 - Gas Planta Alta

ANEXO II

ARCHICAD

Archivos de Instalación de Programa Archicad 02 – Diseño de la Nave Industrial

ANEXO III

EXCEL

01 – Explosión del producto

02 - Circuitos Eléctricos

ANEXO IV

DIALUX

Cálculo de iluminación en programa Dialux

ANEXOS

ANEXO I PLANOS	
PLO1 – Funcional PLE01 – Potencia Iluminación Planta Baja PLE02 – Potencia Iluminación Planta Alta PLE03 – Unifilar TG PLE04 – Unifilar TS1 PLE05 – Unifilar TS2 PLA01 – Neumática Planta Baja PLA02 – Neumática Planta Alta PLG01 – Gas Planta Baja PLG02 – Gas Planta Alta	
ANEXO II ARCHICAD	
Archivos de Instalación de Programa Archicad 01 – Diseño de la Nave Industrial	
ANEXO III EXCEL	
01 – Explosión del producto 02 – Circuitos Eléctricos	
ANEXO IV DIALUX	
Cálculo de iluminación en programa Dialux	

ANEXO I

PLANOS

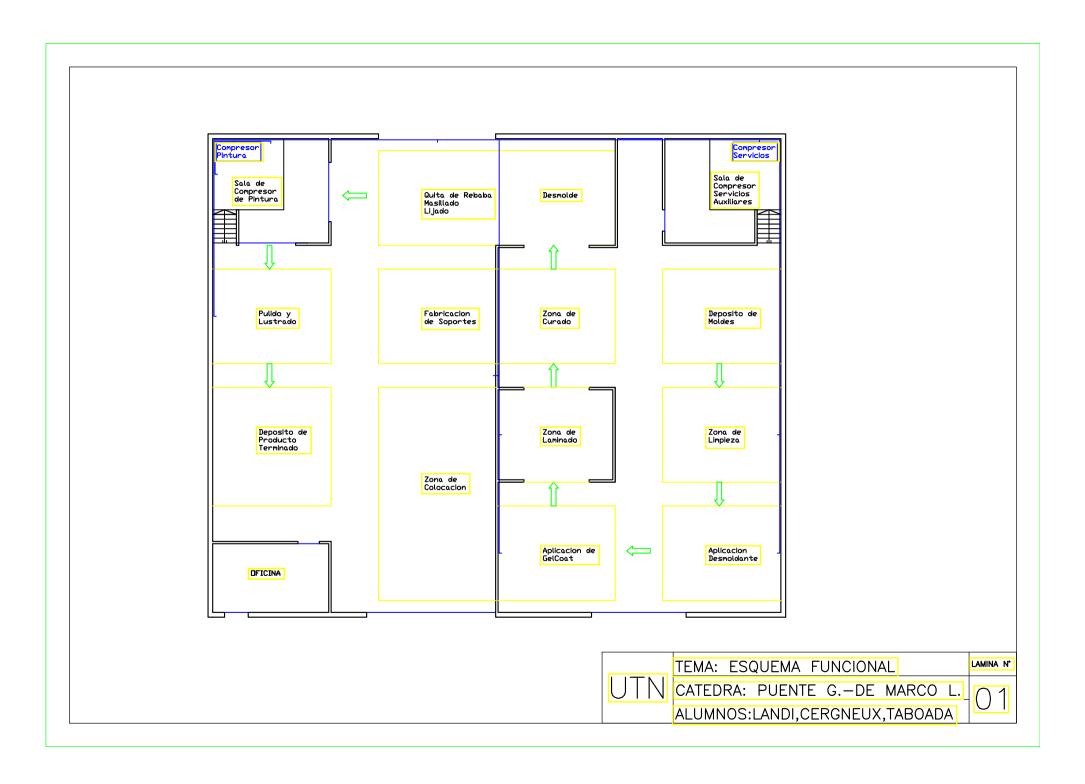
PL01 – Funcional

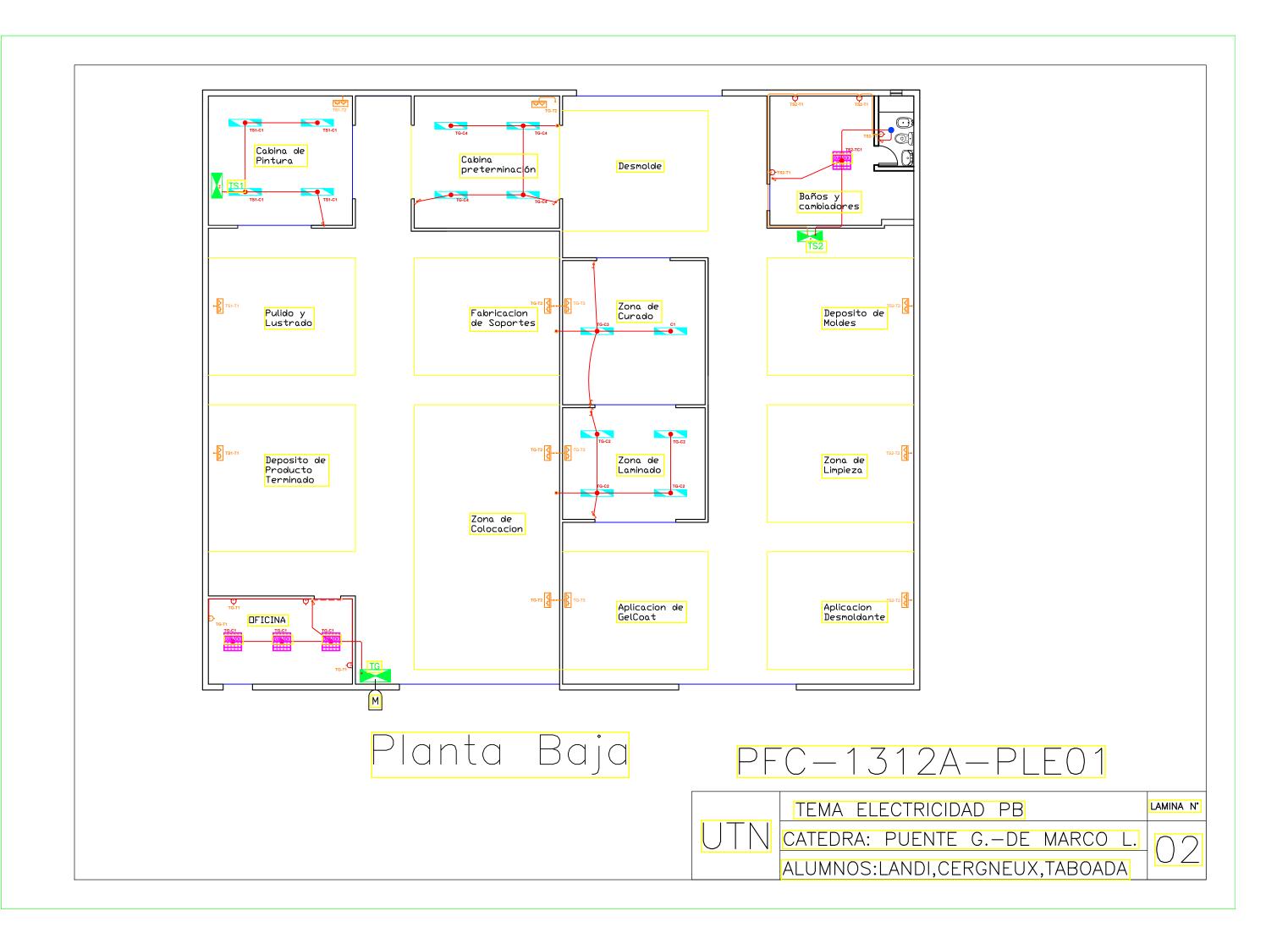
PLE01 – Potencia Iluminación Planta Baja

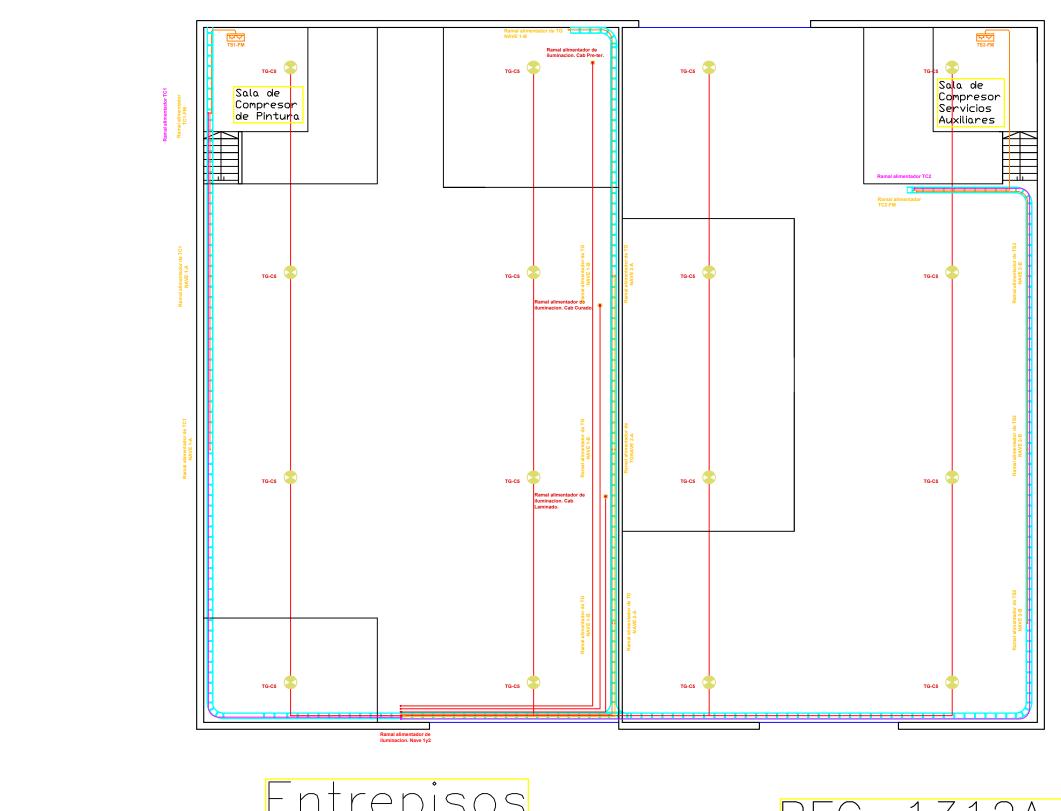
PLE02 - Potencia Iluminación Planta Alta

PLE03 – Unifilar TG

PLE04 – Unifilar TS1


PLE05 – Unifilar TS2


PLA01 – Neumática Planta Baja

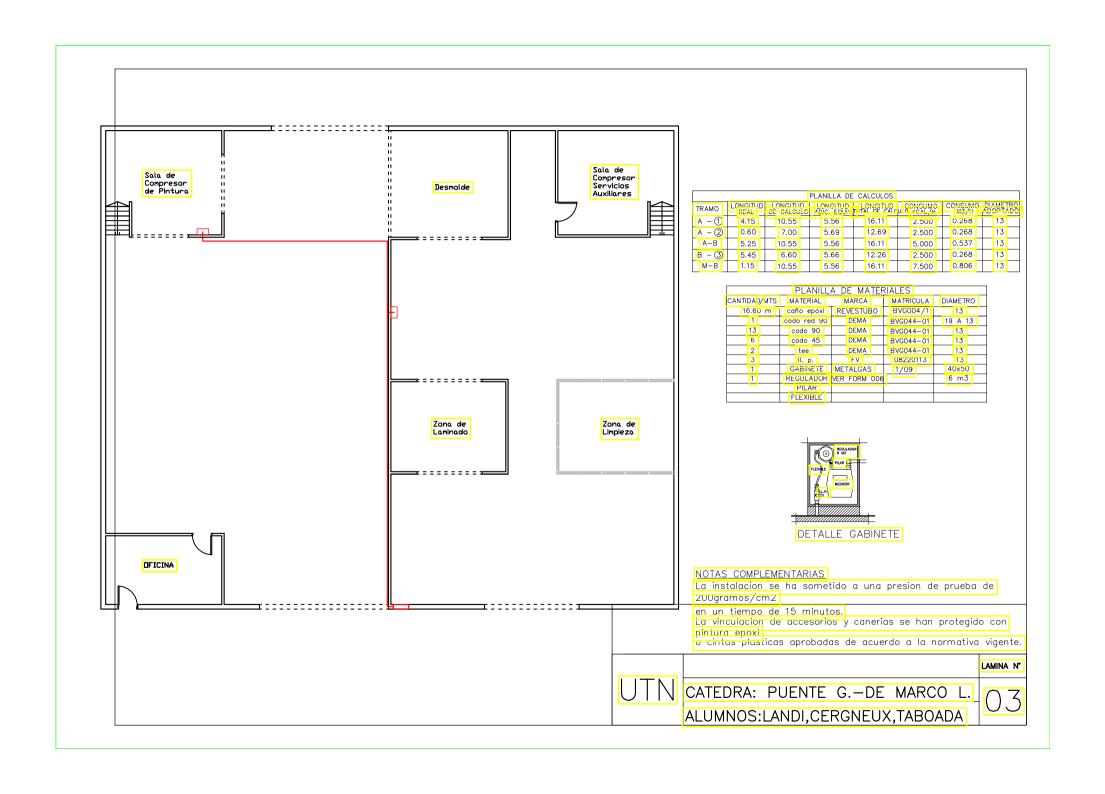

PLA02 - Neumática Planta Alta

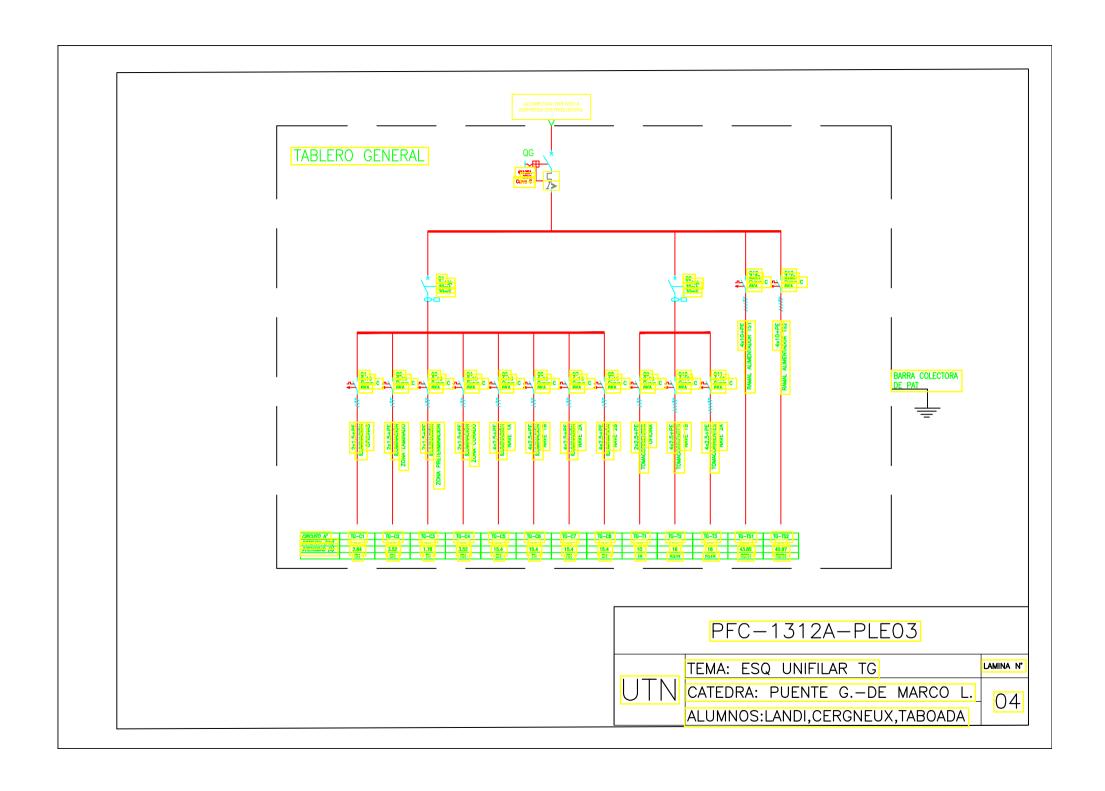
PLG01 – Gas Planta Baja

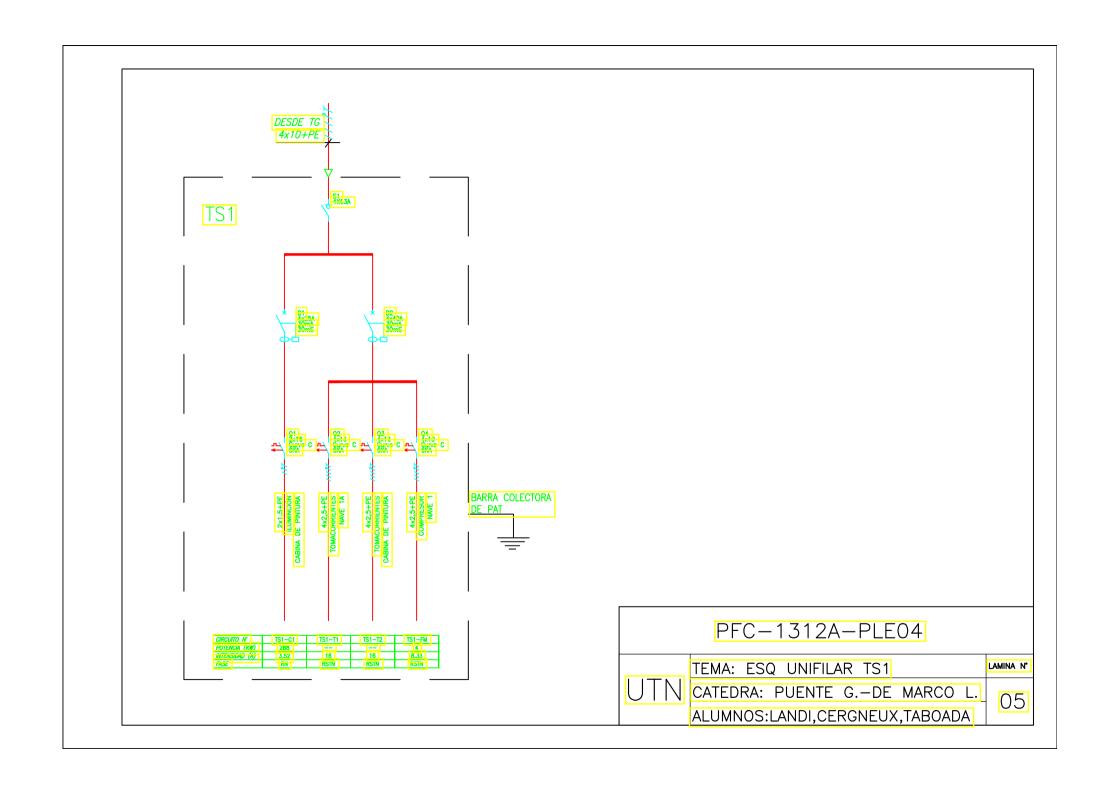
PLG02 - Gas Planta Alta

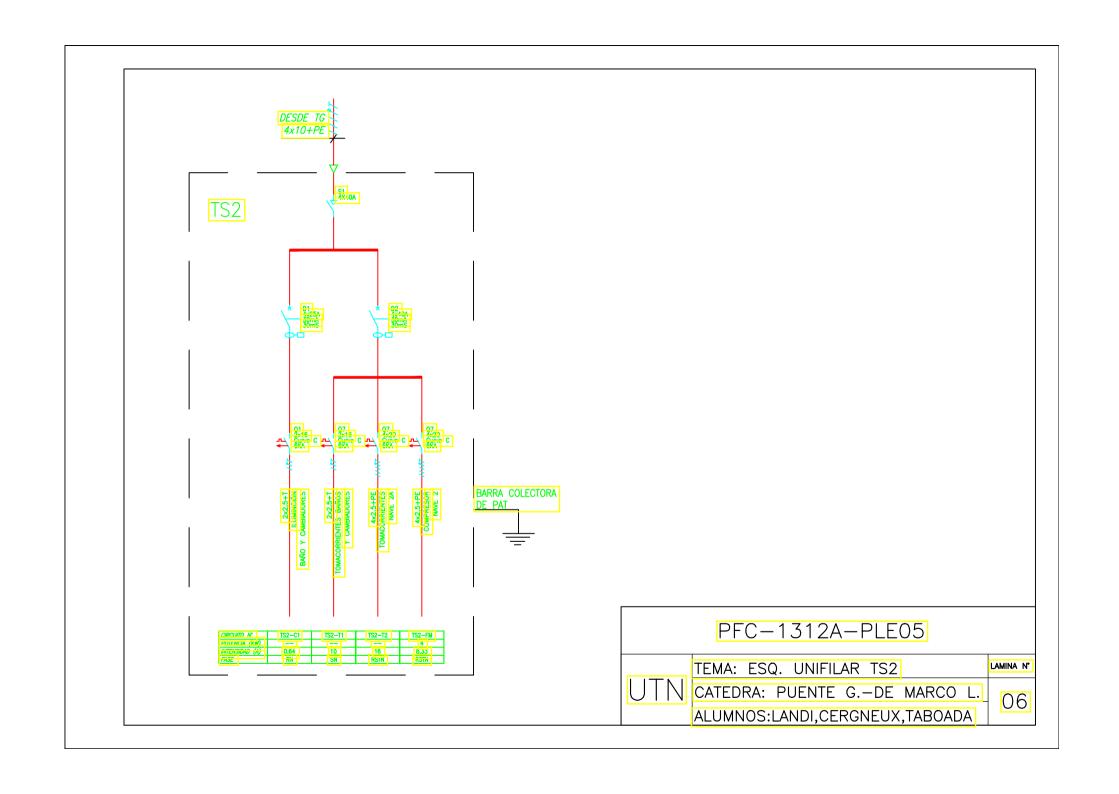
Entrepisos

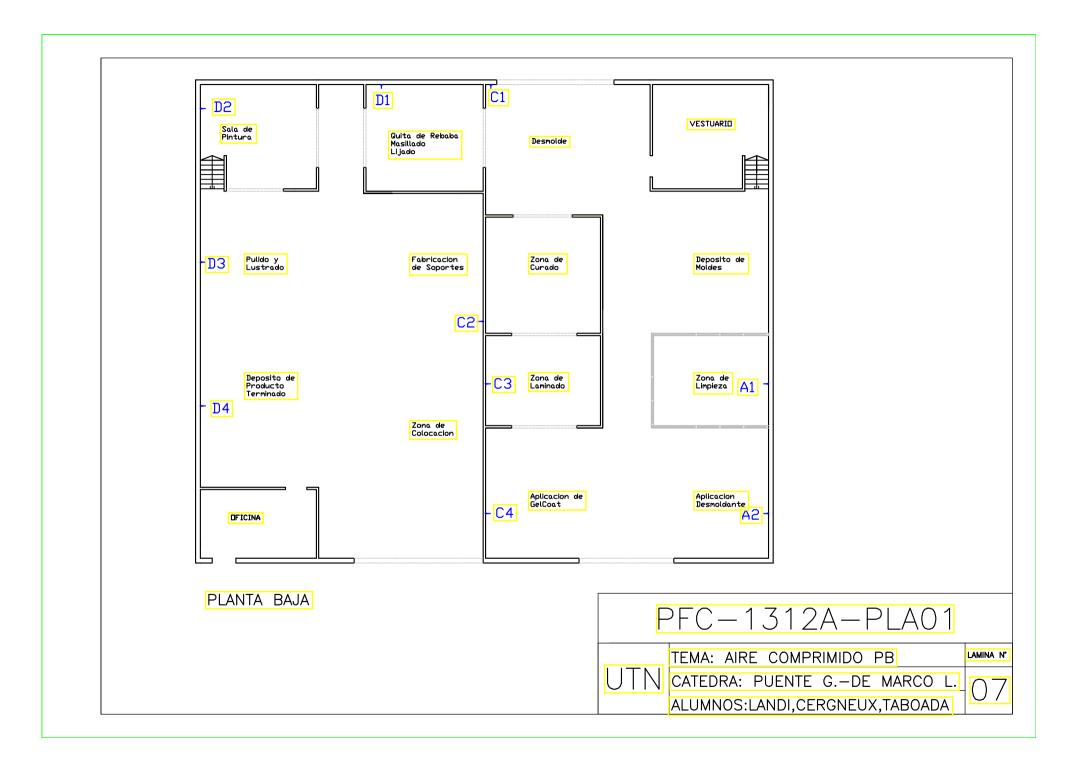
PFC-1312A-PLE02

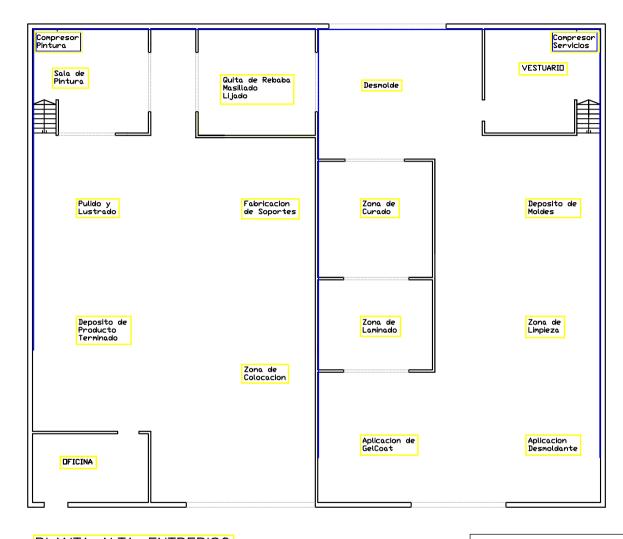



TEMA: ELECTRICIDAD PA PLE02


CATEDRA: PUENTE G.-DE MARCO L.

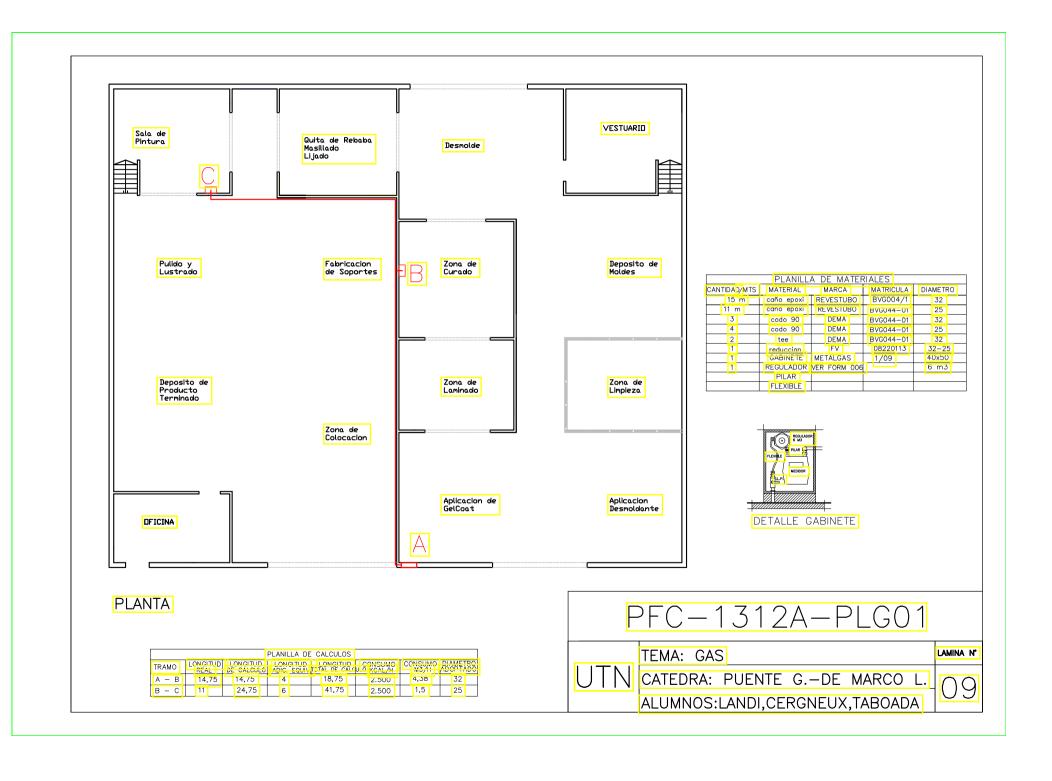

ALUMNOS:LANDI,CERGNEUX,TABOADA

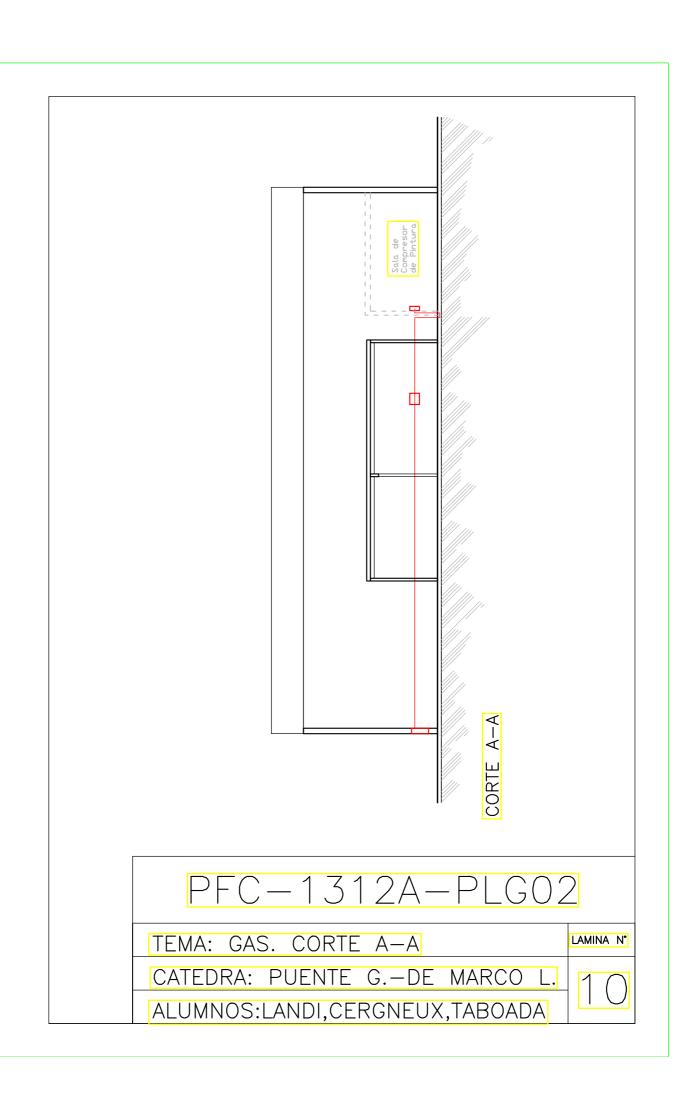




	PLANILLA DE CALCULOS											
TRAMO		LONGITUD			DE CALCULO					DIAMETRO DOPTADO		
	Α1			16			16	,45	П		1/2"	
	Α2			5			5	,57	П		1/2"	
	В	•		11			Ī	11		Ī	1 1/2	77
	C1			7,	5		ľ	7,7			1/2"	Ī
	C2			2,	5		3	,26			3/4"	
	СЗ			2,	5			3		Г	1/2"	
	C4			5			5,	,57			1/2"	
	D1			2,	5		3	,26		П	3/4"	П
	D2			8			8	,45			1/2"	
	D3			10			10	0,83	3		1/2"	
	D4			5			5	,5			1/2″	

PLANTA ALTA-ENTREPISO


PFC-1312A-PLA02


TEMA: AIRE COMPRIMIDO PA

CATEDRA: PUENTE G.-DE MARCO L

LAMINA N°

ALUMNOS:LANDI,CERGNEUX,TABOADA

ANEXO II

ARCHICAD

Archivos de Instalación de Programa Archicad 02 – Diseño de la Nave Industrial

ANEXO III

EXCEL

01 – Explosión del producto

02 - Circuitos Eléctricos

ANEXO IV

DIALUX

Cálculo de iluminación en programa Dialux