Supplementary material for ADSORPTION

Compared arsenic removal from aqueous solutions by synthetic mixed

oxides and modified natural zeolites

Angélica Heredia^a*, Jenny Gómez Avila^a, Ariel Vinuesa^a, Clara Saux^a, Sandra M. Mendoza^b, Fernando Garay^c, Mónica Crivello^a.

 ^a CITeQ-CONICET, Universidad Tecnológica Nacional, Facultad Regional Córdoba, Maestro Marcelo López esq. Cruz Roja Argentina, Ciudad Universitaria, X5016ZAA, Córdoba, Argentina
^b Universidad Tecnológica Nacional, CONICET, Facultad Regional Reconquista, Reconquista, Argentina
^c INFIQC-CONICET, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Pabellón Argentina, Ciudad Universitaria. X5000HUA Córdoba, Argentina
*angelicacheredia@gmail.com

Figure 1: Time dependence of As(III) adsorption capacity. $C_0 = 170 \ \mu g \ L^{-1}$ of As(III). Adsorbent dose: 1.42 g L^{-1} .

Figure 2: The Pseudo first (A, B) and Pseudo second (C, D) order kinetic models.

Figure 3. (A) Experimental differential current (ΔI) corresponding to CS-SWV of As(III) after: (a) exposing 70 mL of a solution with 170 µg L⁻¹ of As(III) to 0.1g of ZA₄. Curves (b), (c) and (d) are standard additions of As(III) = 10 µg L⁻¹. Other parameters are 1 M HCl, f = 100 Hz, E_{sw} = 50 mV, dE = 5 mV, t_{ac} = 20 s, and E_{ac} = -0.4 V. (B) Dependence of ΔI_p on the concentration of As(III).

Figure 4. (A) Experimental differential current (ΔI) corresponding to CS-SWV of As(III) after: (a) exposing 70 mL of a solution with 170 µg L⁻¹ of As(III) to 0.1g of OS₄. Curves (b), (c) and (d) are standard additions of As(III) = 10 µg L⁻¹. Other parameters are 1 M HCl, f = 100 Hz, E_{sw} = 50 mV, dE = 5 mV, t_{ac} = 20 s, and E_{ac} = -0.4 V. (B) Dependence of ΔI_p on the concentration of As(III).