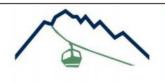
CAPÍTULO DOS

LOSAS NERVURADAS DE HORMIGÓN ARMADO

2.1 ANÁLISIS DE CARGAS Y COMBINACIONES

Al realizar el análisis de cargas, se tiene en cuenta la influencia del nervado, como así también del contrapiso de pendiente, tomando para el cálculo un valor medio del mismo. Otra hipótesis que se tomó, es que se analizaran fajas de ancho igual a la distancia entre ejes de simetría de la nervadura, con motivo de simplificar el análisis. Los valores de carga permanente y sobrecarga fueron obtenidos del CIRSOC 101.Interesa particularmente el valor de E_v, el cual se obtiene del análisis de la acción sísmica, lo cual se determina en un capitulo posterior. Las combinaciones de carga a estudiar son las siguientes.

```
U=1,4D
```


U=1,2D+1,6Lr

 $U=1,2D+1,00E_v+f_1Lr$ (f₁ = 0)

U=0,9D -1,00E_v

Siendo E_v= 0,117D, las combinaciones resultantes a estudiar son las siguientes.

- 1. U=1,4D
- 2. U=1,2D+1,6Lr
- 3. $U=1,2D+0,117E_v=1,31D$ (No es crítica)
- 4. $U=0.9D -1.00E_v=0.78D$ (No es crítica)

2.1.1 Losas L1-L2-L3

Ancho de fajas= 0,5846 m

 $q_{Lr}= 1 \text{ KN/m}^2$

q_{Lr}= 0,5846KN/m.Faja

Material	Υ KN/m³	Υ KN/m²	Espesor m	Volumen m³	Área m²	Peso KN/m.Faja
Suelo	21	-	0,2	0,11692	-	2,46
Contrapiso	16	6 .	0,11	0,064306	-	1,03
H°A°	25	7 4 5	-	0,121	-	2,63
Cielorrasos	-	0,5		-	0,5846	0,29

▲ Tabla 2.1

q_D= 6,80KN/m.Faja

 $q_D = 11,63 \text{KN/m}^2$

Combinaciones de Carga

 $q_u = 1,4*q_D = 9,52KN/m.Faja$

 $q_u = 1,2*q_D + 1,6*L_r = 9,10 \text{ KN/m.Faja}$

q_u= 9,52KN/m.Faja

 $q_u = 16,29KN/m^2$

2.1.2 Losa L4-L5-L6

Ancho de fajas= 0,59 m

 $q_{Lr} = 1 \text{ KN/m}^2$

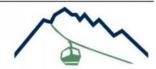
q_{Lr}= 0,59KN/m.Faja

Material	Υ KN/m³	Υ KN/m²	Espesor m	Volumen m³	Área m²	Peso KN/m.Faja
Suelo	21) = ;	0,2	0,118	-	2,48
Contrapiso	16	-	0,13	0,0767	-	1,23
H°A°	25	-	-	0,139	-	3,48
Cielorrasos	-	0,5	-	-	0,59	0,30

▲ Tabla 2.2

q_D= 7,48KN/m.Faja

 $q_D = 12,67 \text{ KN/m}^2$


Combinaciones de Carga

 $q_u = 1,4*q_D = 10,47 \text{ KN/m.Faja}$

 $q_u = 1,2*q_D + 1,6*L_r = 9,91 \text{ KN/m.Faja}$

q_u= 10,47KN/m.Faja

 $q_u = 17,74KN/m^2$

2.1.3 Losas en Voladizo L.V. 1 - L.V. 2

Ancho de fajas= 0,5846 m

 $q_{Lr}= 1 \text{ KN/m}^2$

q_{Lr}= 0,5846KN/m.Faja

Material	Υ KN/m³	Υ KN/m²	Espesor m	Volumen m³	Área m²	Peso KN/m.Faja
Suelo	21	-	0,2	0,11692	-	2,46
Contrapiso	16	(-)	0,08	0,046768	-	0,75
H°A°	25): <u>4</u> 1	-	0,095	-	2,15
Cielorrasos	-	0,5	-	-	0,5846	0,29

▲ Tabla 2.3

q_D= 5,87KN/m.Faja

 $q_D = 10,04 \text{KN/m}^2$

2.1.4 Losa en Voladizo L.V. 3- L.V. 4 -L.V. 5

Ancho de fajas= 0,59 m

 $q_{Lr}= 1 \text{ KN/m}^2$

q_{Lr}= 0,59KN/m.Faja

Material	Υ KN/m³	Υ KN/m²	Espesor m	Volumen m³	Área m²	Peso KN/m.Faja
Suelo	21		0,2	0,118	-	2,48
Contrapiso	16	8 5 8	0,08	0,0472	-	0,76
H°A°	25	21 <u>4</u> 23	72	0,107	-	2,68
Cielorrasos	-	0,5	-	-	0,59	0,30

▲ Tabla 2.4

q_D= 6,20KN/m.Faja


 $q_D = 10,51 \text{ KN/m}^2$

2.2 CALCULO DE SOLICITACIONES EN LOSAS NERVURADAS

2.2.1 Calculo de Momentos en apoyos y tramos

Para realizar el cálculo de momentos en apoyos y tramo, se utilizó el método elástico usando las tablas de Marcüs - Löser, realizando la compatibilización de momentos en tramos continuos y el efecto de alivianamiento que los momentos de apoyo generan en los tramos.

Al analizar las plantas estructurales, se observa continuidad de las losas nervuradas, ya sea por otra losa contigua y apoyada en sus cuatro bordes, o por un voladizo. Es importante mencionar que al considerar el efecto de alivianamiento, que los voladizos le producen a las losas nervadas cruzadas, solo se tiene en cuenta la carga permanente y sin mayorar (Hipótesis del lado de la seguridad). En la tabla2.5 se muestra el procedimiento de cálculo.

Variable	Unidad	L1	L2	L3	L4	L5	L6	L7	L8	L9
Dimension	nes y cargas									
Faja	m	0,5846	0,5846	0,5846	0,59	0,59	0,59	0,5846	0,5846	0,5846
Fajas	Cant. Teorica	14,37	14,37	14,37	21,36	21,36	21,36	14,37	14,37	14,37
q _U	KN/m.Faja	9,52	9,52	9,52	10,47	10,47	10,47	9,52	9,52	9,52
Ly	m	8,4	8,4	8,4	12,6	12,6	12,6	8,4	8,4	8,4
Lx	m	8,4	8,4	8,4	12,6	12,6	12,6	8,4	8,4	8,4
Ly/Lx	Adim.	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Momentos	s en apoyos sin	compatibili	zacion de b	orde						
Χ	Adim.	0,33330	0,50000	0,33330	0,28570	0,33330	0,33330	0,28570	0,28570	0,00000
ρ	Adim.	0,66670	0,50000	0,66670	0,71430	0,66670	0,66670	0,71430	0,71430	0,00000
X _{teorico}	KN.m/Faja	-27,986	-41,983	-27,986	0,000	-69,252	-69,252	0,000	0,000	0,000
Y _{teorico}	KN.m/Faja	-3,550	-3,550	-3,550	-3,750	-3,750	-3,750	-59,977	-59,977	0,000
Momentos	s en apoyos con	npatibilizad	os - Definiti	vos						
Χ	KN.m/Faja	-34,984	-34,984	-34,984	0,000	-69,252	-69,252	0,000	0,000	0,000
Υ	KN.m/Faja	-3,550	-3,550	-3,550	-3,750	-3,750	-3,750	-59,977	-59,977	0,000
Solicitacio	nes Momentos	en tramo d	onsiderand	o bordes si	mplemente	apoyado				
α	Adim.	0,03646	0,03646	0,03646	0,03646	0,03646	0,03646	0,03646	0,03646	0,03646
β	Adim.	0,03646	0,03646	0,03646	0,03646	0,03646	0,03646	0,03646	0,03646	0,03646
M' _X	KN.m/Faja	24,491	24,491	24,491	60,604	60,604	60,604	24,491	24,491	24,491
M' _Y	KN.m/Faja	24,491	24,491	24,491	60,604	60,604	60,604	24,491	24,491	24,491
M _Y /M _X	Adim.	1	1	1	1	1	1	1	1	1
ΣM _{Apoyos}	KN.m	-604,697	-1107,375	-604,697	-80,085	-1639,113	-1639,113	-861,800	-861,800	0,000
ΔΜ	KN.m	-7,825	-14,329	-7,825	-0,691	-14,140	-14,140	-11,152	-11,152	0,000
Solicitacio	nes de Momen	tos en tram	o - Definitiv	as						
M_X	KN.m/Faja	16,667	10,162	16,667	59,914	46,464	46,464	13,340	13,340	24,491
M _Y	KN.m/Faja	16,667	10,162	16,667	59,914	46,464	46,464	13,340	13,340	24,491

▲ Tabla 2.5

2.2.2 Calculo de Reacciones en vigas y Esfuerzo cortante para diseño

Para calcular el esfuerzo cortante de diseño y la carga por faja que cada losa transfiere a las vigas perimetrales se sigue el procedimiento de cálculo propuesto por el Ing. Luis Facchin (Diseño de estructuras de Hormigón Armado y Pretensado - U.N.C.), este procedimiento consiste en dividir a la losa en triángulos y trapecios según la condición de vinculo de los bordes. El procedimiento de cálculo se muestra en la tabla 4.6. La carga se obtiene mediante la siguiente expresión:

$$q_i(\mathit{KN/Faja}) = \frac{A_i * q\left(\frac{\mathit{KN}}{\mathit{m}^2}\right)}{l_i} * \mathit{Ancho} \; \mathit{de} \; \mathit{faja}\left(\frac{\mathit{m}}{\mathit{Faja}}\right)$$

PROYECTO FINAL

INGENIERÍA CIVIL

Variable	Unidad	L1	L2	L3	L4	L5	L6	L7	L8	L9	
Areas, Lado	eas, Lados y Cargas de las losas										
qυ	KN/m ²	16,29	16,29	16,29	17,74	17,74	17,74	16,29	16,29	16,29	
A ₁	m ²	14,46	22,92	24,86	35,82	55,95	32,55	12,71	12,71	17,86	
A ₂	m ²	15,60	12,34	15,60	47,22	35,07	35,07	16,47	28,62	17,86	
A ₃	m ²	15,60	12,34	15,60	39,77	32,55	55,95	12,71	12,71	17,86	
A ₄	m ²	24,86	22,92	14,46	35,82	35,07	35,07	28,62	16,47	17,86	
L ₁	m	8,40	8,40	8,40	12,60	12,60	12,60	8,40	8,40	8,40	
L ₂	m	8,40	8,40	8,40	12,60	12,60	12,60	8,40	8,40	8,40	
L ₃	m	8,40	8,40	8,40	12,60	12,60	12,60	8,40	8,40	8,40	
L ₄	m	8,40	8,40	8,40	12,60	12,60	12,60	8,40	8,40	8,40	
Carga en vi	igas por fajas				*			10		110	
q ₁	KN/m	28,04	44,45	48,21	50,43	78,77	45,83	24,65	24,65	34,64	
q ₂	KN/m	30,25	23,93	30,25	66,48	49,38	49,38	31,94	55,50	34,64	
q_3	KN/m	30,25	23,93	30,25	55,99	45,83	78,77	24,65	24,65	34,64	
q ₄	KN/m	48,21	44,45	28,04	50,43	49,38	49,38	55,50	31,94	34,64	
q ₁	KN/Faja	16,39	25,98	28,18	29,76	46,48	27,04	14,41	14,41	20,25	
q ₂	KN/Faja	17,69	13,99	17,69	39,22	29,13	29,13	18,67	32,45	20,25	
q_3	KN/Faja	17,69	13,99	17,69	33,04	27,04	46,48	14,41	14,41	20,25	
q ₄	KN/Faja	28,18	25,98	16,39	29,76	29,13	29,13	32,45	18,67	20,25	
Solicitacion	n de corte de d	diseño									
V _u	KN/Faja	28,18	25,98	28,18	39,22	46,48	46,48	32,45	32,45	20,25	

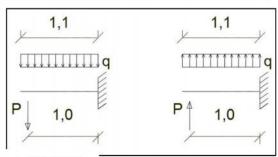
▲ Tabla 2.6

2.3 CALCULO DE SOLICITACIONES DE LOSAS EN VOLADIZO

Las solicitaciones de corte y momento se determinan en los voladizos mediante las expresiones de la estática, considerándolo al mismo empotrado en el apoyo. Además el voladizo es un elemento sensible a vibraciones verticales inducidas por la acción sísmica, por lo tanto se deben verificar teniendo en cuenta el reglamento INPRES-CIRSOC 103 - Tomo I. Para el cálculo de solicitaciones se tuvo en cuenta la viga de borde. En la figura 2.1 se muestra el esquema de cálculo y en la tabla 2.7 el procedimiento de cálculo.

$$F_V = C_a * Y_r * W_i$$
 (Fuerza Hacia Abajo)
 $F_V = 0.23 * D$ (No es critica)

$$F_{Vup} = -C_a * W_i$$
 (Fuerza Hacia Arriba)
$$F_{Vup} = -0.18 * D$$

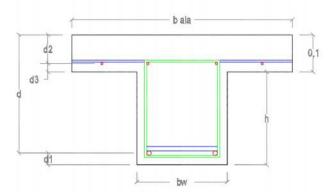

UNIVERSIDAD TECNOLÓGICA NACIONAL

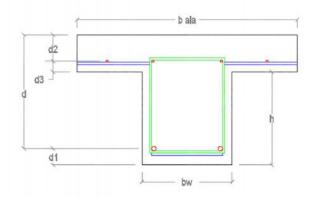
PROYECTO FINAL

INGENIERÍA CIVIL

FACULTAD REGIONAL LA RIOJA

Variables	Voladizo	LV1-2	LV3-4-5
Dimensiones		San 19 19 San 19	
Faja	m	0,5846	0,59
Fajas	Cant. Teorica	7,18	7,12
Largo por viga	m	4,20	4,20
Analisis de cargas			
q _{Lr}	KN/m.Faja	1,00	1,00
q _d	KN/m.Faja	5,87	6,20
L de qd -qlr	m	0,90	0,90
h _{viga borde}	m	0,30	0,35
P _{d - viga de borde}	KN/Faja	0,88	1,03
L a viga de borde	m	1,00	1,00
P _{d -Mamposteria}	KN/Faja	0,80	0,80
L _{viga de borde y Mamp.}	m	1,00	1,00
P _d	KN/Faja	1,67	1,83
Cargas por Vibraci	ón sismica		
q _{VUP}	KN/m.Faja	1,057	1,116
P _{VUP}	KN/Faja	0,301	0,330
q _U =1,4q _{vup}	KN/m.Faja	1,479	1,562
P _U =1,4P _{vup}	KN/m.Faja	0,421	0,462
Mu	KN.m/Faja	0,870	0,930
Estados de carga s	sin accion Sismi	ca	
q _U (1,2D+1,6Lr)	KN.m/Faja	8,644	9,040
P _U (1,2D+1,6Lr)	KN/Faja	2,006	2,202
q _U (1,4D)	KN.m/Faja	8,218	8,680
P _U (1,4D)	KN/Faja	2,341	2,569
Solicitaciones sin	Accion Sismica		
M _U (1,2D+1,6Lr)	KN.m/Faja	-5,507	-5,863
M _U (1,4D)	KN.m/Faja	-5,669	-6,084
V _U (1,2D+1,6Lr)	KN/Faja	9,786	10,338
V _U (1,4D)	KN/Faja	9,737	10,381
Solicitaciones de l	Diseño		
Mu	KN.m/Faja	0,870	0,930
Mυ	KN.m/Faja	-5,669	-6,084
V _U	KN/Faja	9,786	10,381
Reacciones			
q_d	KN/m ²	10,040	10,510
q _{Lr}	KN/m ²	1,000	1,000
R _D	KN/m	10,708	11,294
R_{Lr}	KN/m	0,900	0,900


▲ Figura 2.1



2.4 DIMENSIONADO DE ARMADURA A FLEXIÓN

2.4.1 Momento en tramo (Positivo)

Se calcula la armadura siguiendo los lineamientos del CIRSOC 201-2005, se respetaron los valores de recubrimiento y separación entre barras estipulados en el reglamento y se calculó teniendo en cuenta el aporte de la armadura de repartición colocada en el tablero de la losa nervurada. En la figura 2.2 se muestra la nomenclatura que se utilizó para el dimensionado de la armadura a tracción. Como son dos las direcciones de análisis, las distancias d1, d2 y d3 cambian según la dirección de estudio.

▲ Figura 2.2

$$C_{Ala} = b_{Ala} * 0.85 * f_c' * a$$

$$M_n = C_{Ala} * \left(d - \frac{a}{2}\right) - A_{S-Rep} * f_s * (d''' + h - d')$$

El momento nominal fue tomando desde la armadura traccionada del nervio. A continuación se plantea una expresión de segundo grado, dejando en la misma como variable al valor "a".

$$0 = -b_{Ala} * 0.85 * f'_c * \frac{a^2}{2} + b_{Ala} * 0.85 * f'_c * d * a + (A_{S-Rep} * f_s * (d''' + h - d') - M_n)$$

$$A = -b_{Ala} * 0.85 * f'_c * \frac{1}{2}$$

$$B = b_{Ala} * 0.85 * f'_c * d$$

$$C = A_{S-Rep} * f_s * (d''' + h - d') - M_n$$

INGENIERÍA CIVIL

Se tomó la hipótesis de considerar que el bloque de compresión se ubica totalmente en el ala (efectivamente es así al realizar los cálculos), además se verifica la deformación del acero de repartición, ya que el mismo influye en la posición de "a". Se verifican cuantías mínimas, como así también que la deformación del acero más traccionado sea mayor al 5% (Φ =0,9).

2.4.2 Momento en Apoyos (Positivo y Negativo)

Se dimensiona la armadura a tracción utilizando las hipótesis de cálculo utilizadas en la expresión aproximada, planteada por la catedra de Hormigón Armado de la Universidad Nacional de Cuyo, la expresión mencionada también es recomendada por el INPRES, la referencia internacional que plantea esta ecuación es la bibliografía "Seismic Design of Reinforced Concrete and Masonry Buildings" T. Paulay – J. Priestley.

Cuando la sección alcanza su resistencia nominal, el hormigón estalla por compresión y la profundidad del eje neutro es muy pequeña, la armadura de compresión se ubica en la parte superior. La hipótesis consiste en decir que la resultante de compresión del hormigón pasa por el baricentro de la armadura comprimida. Por ello al plantear las ecuaciones de equilibrio, el término que refleja la resistencia a compresión del hormigón sale de la ecuación, al no tener brazo de palanca. En lo referido a cantidad máxima de armadura en tracción, se toma la especificación base de nuestro reglamento CIRSOC 201.

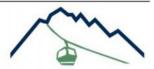
2.4.3 Dimensionado de armaduras

En las siguientes tablas se muestran las armaduras necesarias para absorber las solicitaciones de momento y corte. En los planos estructurales se grafica la ubicación de estas armaduras y los detalles necesarios, para su correcta interpretación.

Variable	Unidad	L1	L2	L3	L4	L5	L6	L7	L8	L9
Dimensiones										
h _{nervio}	cm	20	20	20	25	25	25	20	20	20
b _w	cm	18,45	18,45	18,45	19,00	19,00	19,00	18,45	18,45	18,45
Tablero	cm	10	10	10	10	10	10	10	10	10
Acero de Nerv	io Longitudinal	y Estribos								
A _{S Nervio}	U./Nervio	4ф8mm	4ф8mm	4ф8mm	3ф16mm	2ф16mm	2ф16mm	4ф8mm	4ф8mm	3ф10mn
Estribos	mm	6	6	6	6	6	6	6	6	6
Sep. Estribos	cm	13	13	13	15	15	15	13	13	13
Acero de Rep	articion en Tab	lero								
A _{S-Rep}	U./Faja	4ф6mm	4ф6mm	4ф6mm	4ф6mm	4ф6mm	4ф6mm	4ф6mm	4ф6mm	4ф6mm
A _{S-Rep}	Sep. en tablero (cm)	13	13	13	13	13	13	13	13	13

▲ Tabla 2.8 – Armadura en Nervios y de Repartición en tablero

Variable	Unidad	L.V.1 - L.V.2	L.V.3	L.V.4- L.V.5
Acero de Nervi	os			
A _{S-Sup. Nervio}	Φ	6mm	6mm	6mm
A _{S-Sup. Nervio}	U.	2	2	2
Acero de Adicio	onales			
As	Φ	6mm	6mm	6mm
Cant.	U.	3	3	3
Sep.	cm	19	20	20
Acero Inferior e	n Nervios			
As	Φ	8mm	8mm	8mm
Cant.	U.	3	3	3


▲ Tabla 2.9 - Acero en Nervios y Adicionales de Voladizos

Variable	Unidad	Apoyos Bloque 1 Apoyos Bloque 3		Apoyos Bloque 4
Adicionales Su	periores			
As	Φ	10mm	10mm	10mm
Cant.	U.	5	8	7
Sep.	cm	12,00	8,00	9,00
Adicionales en	Nervios - Sol	ore armadura continu	ia de tramos	
A _{S-nervio Adic.}	Φ	10mm	16mm	16mm
A _{S-nervio Adic.}	U.	4	2	3

▲ Tabla 2.10 - Acero Adicional en Nervios sobre armadura continua de tramos

PROYECTO FINAL INGENIERÍA CIVIL

