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Randomly-Branched Polymers by Size
Exclusion Chromatography with Triple
Detection: Computer Simulation Study for
Estimating Errors in the Distribution of
Molar Mass and Branching Degree®

Luis A. Clementi, Jorge R. Vega, Gregorio R. Meira*

This article theoretically evaluates the biases introduced into the distributions of molar masses (MMD) and
the number of long chain branches per molecule (LCBD), when randomly-branched polymers are analyzed
by size exclusion chromatography (SEC) with molar mass-sensitive detectors. The MMD of a polymer with
tetrafunctional branch units has been calculated with the Stockmayer equation (1943); and an ideal SEC
analysis has been simulated that assumes 6-solvent, perfect measurements, and perfect fractionation by
hydrodynamic volume except for a minor mixing in the detector cells. In ideal SEC, a negligible bias is
introduced into the MMD, with the local dispersity exhibiting a maximum of 1.0035 at the high molar masses.
This result is consistent with previous theoretical investigations, but differs qualitatively from experimental
observations of polymers containing short- and long-chain
branches. When including band broadening in the
columns while still assuming perfect measurements, the
MMD remains essentially unbiased. In contrast, poor MMD il —— P -
estimates are obtained when the chromatograms are "¢

contaminated with additive noise. Only qualitative 0 iy
estimates of the LCBD are possible, due to theoretical i
limitations combined with propagation of errors in a : /—mﬂ
highly nonlinear calculation procedure.l Please shorten 5 rosasamy |

abstract to 700 characters (present tense) l I W
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1. Introduction amylopectins). Short-chain branching affects the melting
point, glass-transition temperature, hardness, and degree
of crystallinity. Long-chain branching mainly affects
rheological properties such as sedimentation behavior,
intrinsic viscosity, and elongational viscosity of the
polymer melt. Randomly-branched polymers are produced
through chain- or step polymerizations involving mono-
mers of functionality 3 or higher. Radical polymerizations
of bifunctional monomers also generate random long
branches (by intermolecular chain transfer to the polymer
and/or by termination reactions), and random short
branches (by intramolecular cyclization). Branched topolo-

Chain branching is present in many important polymers,
both synthetic (such as polyacrylates), and natural (such as
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gies are characterized by the number of branch units
per molecule (or branching degree b), and by the
functionality of the branch units (f). In star molecules,
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b=1,andf(=3,4,...)is the number of arms. In randomly-
branched polymers, b=0,1,2,..., and fis typically = 3 or 4.

So far, no analytical technique is capable of fractionating
molecules according to number of branches; and therefore
no truly quantitative method is available for measuring the
distribution oflong chain branches per molecule (LCBD). For
certain polymers, *>C nuclear magnetic resonance spec-
troscopy (NMR) is an absolute technique for measuring
average branching; and in the case of sparsely-branched
polyolefins, branching frequencies as low as 0.001% of the
total repeating units have been determined by melt-state,
high-resolution, magic-angle spinning.!*! A further difficul-
ty with **CNMR is that it cannot distinguish between short-
and long chain branches.

Size exclusion chromatography (SEC) with triple detec-
tion [i.e.: fit with a differential refractometer (DR), a light-
scattering detector at 0° (LSy), and a specific viscometer (SV)]
is presently the preferred (albeit indirect) technique for
characterizing long chain branching.”™® In randomly-
branched polymers, the branching degree increases with
molar mass, and fractionation by hydrodynamic volume
simultaneously provides some fractionation by branching
degree. Linear molecules exhibit bigger hydrodynamic
volumes than branched molecules of the same molar mass.
For this reason, branched polymers are chromatographical-
ly complexed, since even under perfect fractionation by
hydrodynamic volume, whole distributions of molar
masses and branching degrees are present in the detector
cells. In practice, these local or instantaneous distributions
are further broadened by imperfect resolution or band
broadening (BB). For quantitative estimates of the MMD
and LCBD, their local distributions must be narrow along
the whole range of elution volumes.

The local average number of branches per molecule is
indirectly estimated from the concept that a branched
molecule is smaller than its linear homolog of the same
molar mass. At a fixed molar mass (M), the geometric
contraction factor is defined by:®!

Similarly, the viscometric contraction factor is defined

M=M,=M)  (2)

In Equation (1) and (2), the subscripts b and !
indicate branched and linear molecules, respectively; R;
is the average squared radius of gyration over all possible
configurations and conformations; [5] is the intrinsic
viscosity; and (k, «) are the Mark-Houwink—Sakurada
(MHS) constants of the linear homolog. Both contraction
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factors are interrelated through the semi-empirical
expression:

g’ E git B(0E Sof= 1.5) (3)

where exponent ¢ is a measure of molecular drainability.
For discussions and values of ¢, see refs.'*~*% A further
complication with Equation (3) is that ¢ is suspect of
depending on molar mass.[*#*]

Direct determination of g via radii of gyration is in
principle possible by multiangle LS/DR. However, this
technique only provides accurate radii of gyration for
M>10°gmol 1 In contrast, SV signals are somewhat
more sensitive to low molar mass, enabling the determina-
tion of g’ from measurements of [5],(V). For linear Gaussian
molecules dissolved in #-solvents, Flory and Fox[*®! devel-
oped the following expression for the radius of gyration:

_ M

Rgl o

(P = By = 3.67 x 10** mol %) (4)

Equation (4) has also been applied to star molecules of
fixed functionality and varying M; and to randomly-
branched polymers of fixed branching degrees and varying
M. 71 In this last case, one can write:

. [’7]be .

R3
g,b &y

(b=1,2,3,..); (f=30r4); (¥, >d)

(5)

From Equation (1), (2), and (5), the following is
obtained*”!:

3
h_ (bb Rgsb — @
451183’1 o}

g% My=M); (b=1,23,..)

Finally, by introducing Equation (3) into Equation (6), one
obtains:

D,

Pp = PEE: ;

(b=1,2,3,..) (7)

With the assumptions: (i) intermolecular reactions are
not considered, (ii) excluded volumes are neglected, and
(iii) all functional groups have the same probability of
reaction; Stockmayer!*#*° developed the following expres-
sion for the bivariate weight chain-length distribution of
a randomly-branched polymer obtained by copolymeriza-
tion of monomers of functionality 2 and f> 3:

Wy o (b+1)f pP 11— p) (L — py
(fb— Db+ 1)

EFGF?EIE‘(b:QszJ

(1=1,2,..)
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where wj; is the weight fraction of molecular species
containing [ bifunctional units and b f-functional units;
p (0<p<1) is the extent of reaction (or ratio between the
number of reacted groups and the total initial number of
reactive groups); and p is the recipe or initial ratio between
the number of reactive groups contained in f-functional
monomers and the total number of reactive groups.

For f= 4, Thurmond and Zimm[?®! developed the follow-
ing alternative recursive expression for Equation (8):

v(2/7,)°F o _2 e,
Wbtl X 2b(2b+ l)(2b+2) Wp_1] with : WOA,I —_We
(9a)
and
_ 2 _
Yu=1p V= PYVu (9b)

where b is the number of tetrafunctional branch units per
molecule; y,, is the weight-average degree of polymeriza-
tion of primary linear molecules (i.e.: molecules that would
exist if all cross-links were severed); and y (with 0 < y<1)is
the branching parameterthattends tounity at the gel point.
To obtain a pregel of a moderately high number-average
chain length and with most of its branch units linked onto f
linear chains of bifunctional repetitive units, the following
parameters are required: p ~ 1 and p << 1.

In SEC with triple detection, the branching functions
by,(log M) or by(log M) are typically calculated as follows. 1?2
First, M, (V) and [n](V) are estimated from the signal ratios
LSy/DR and SV/DR, respectively. Second, the MHS plots log
[n] versus log M, of the branched polymer and its linear
homolog are represented. Third, g”(logM,) is estimated
from the MHS plots. Fourth, g(log M,,) is estimated through
Equation (3) with known value of ¢; and finally b,(log M,,)
[or by(logM,)] are calculated from theoretical or semi-
empirical relationships involving g(b,) [or g(by)]. These
theoretical relationships are well-established forregular (star
or comb) branched topologies, but have never been verified
for randomly-branched topologies.*” In what follows, only
the case of randomly-branched topologies is considered.

For randomly-branched polymers characterized by
Equation (8) and dissolved in a 6-solvent, Zimm and
Stockmayer!® developed the following approximate
expressions for the geometric contraction factors. For
trifunctional branch units and fixed molar masses, it is:

b \Y? ab,
1 —
( +7> +97r

~1/2
;o (M =My) (10)

g3 =

For variations in both b and M, a weight-averaged gs is
obtained through:

'A\
Me \liiﬂ}
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1/2+4b,\"?  ((2+4Db,)"? + b,
) In 1/2 72 1
2\ by (2 + by)"? — b, Y

(11)

6
<93>W = E

For tetrafunctional branch units, the corresponding
expressions are:

~1/2
b\Y2 ap,]
o= |(1+2) 42 ¢ ow-m) @2
In[1 + by
<g4>W:7[ = } (13)

Even though originally developed for random polycon-
densations, Equation (10-13) have been extended onto
radical polymerizations of bi- and multifunctional mono-
mers of f>3.?! Furthermore, and in spite of large
differences in their molecular distributions, Equation
(10-13) are also normally applied onto polymers obtained
by radical polymerization of bifunctional monomers with
chain transfer to the polymer.[2122:25-28]

For f-functional branched molecules with b branch units
in 6-solvents, Kurata and Fukatsul**! developed a model for
a contraction factor that is analogous to g’, but based on the
ratio of Stokes radii. Some years later, and for a polymer
with tetrafunctional branch units obtained by copolymeri-
zation of styrene and divinyl tetrachlorobenzene, Kurata
etal. P suggested the value ¢ = 0.6. This value was adjusted
after comparing theoretical predictions via Equation (2), (3),
and (12) with intrinsic viscosity measurements of fraction-
ated samples in a 6-solvent (cyclohexane at 35 °C).

SEC with triple detection is incapable of providing
accurate estimates of b,(logM) or b,(logM); and the
reasons for this are: (i) the Zimm-Stockmayer Equation (10—
13) are only approximate, and assume 6-conditions; (ii)
errors in required calculation parameters such as the MHS
constants and the ¢ exponent of Equation (3); and (iii) biases
in the determinations of M,/(V) and [5](V), caused by
uncertainties in the interdetector volumes and by the low
signal to noise ratios at the chromatogram tails.**~>%!

Several papers have investigated on the errors in the
MMD when analyzing randomly-branched polymers
by SEC. For a polymer characterized by Equation (8)
with f=4, Jackson!*¥ theoretically predicted only minor
biases in the global dispersity M,/M,,. For several chro-
matographically-complex polymers, Mourey et al.**! sug-
gested a method for estimating the Local Dispersity (LD)
M,(V)/M,(V) by triple detection combined with the
universal calibration. For a mixture of linear and lightly
branched polyesters, the LD is suggested to increase with
the molar mass, but no LD values are presented.!*"!

The articles by Gaborieau et al‘,[(’] Castignolles,
Castignolles et al.,[37], and Gaborieau and Castignolles,
have aimed at determining the LD of several branched

[36]
[38]
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homopolymers synthesized by controlled radical polymer-
ization with backbiting and chain transfer to the polymer.
The LD was determined from independent estimates of
M,(V) by LSo/DR, and of M,(V) by SV/DR + universal
calibration. In all cases, the LD was seen to increase with V,
reaching a maximum of around 2 at the low molar mass
limit of a poly(n-butyl acrylate).l®! In Castignolles,*®! the
high LD observed at the low molar masses of a poly(n-hexyl
acrylate) was suspect of being the result of artifacts in the
data treatment. Possible causes of error are the low
sensitivity of LS signals to low molar masses, and strong
assumptions such as the #-condition associated to the
estimation of M,,(V) by SV/DR + universal calibration.

The mentioned observations by Gaborieau et al.®) are in
contradiction with the very recent simulation results by
Netopilik;'**! where the following assumptions were
adopted: (i) the MMD responds to Equation (9) with the
primary chains following the most probable distribution;
and (ii) the logarithm of the chain-length of the linear
molecules [log (No)] was considered a measure of elution
volume. Many branched species of b branch units and N’;,
total monomer units elute at the same elution volume as a
linear chain of Ny units, according to N', = No/gy,; where gy, is
defined by Equation (1) and (12). The summation of the
contributions of all N, (with b=0, 1, ..., 400) enabled the
calculation of the local chain-length distribution, and
therefore the LD. Additionally, values of the ¢ exponent
[Equation (3)] were estimated through a random-flight
simulation (carried out in a cubic grid) of a model chain
composed by 4800 repeating units (b of them being
tetrafunctional); on the basis of Monte-Carlo simulations
with 20000 independent molecular configurations and
conformations at each value of b. The SEC model yielded
almost indistinguishable values of g and g/, and therefore ¢
~ 1 was suggested. This observation is in accord with
findings by Farmer et al,'*! who claimed that either the
radius of gyration or the viscosity radius can equivalently
describe the SEC separation of molecules. The results by
Netopilik!** suggest that the LD decreases with V, attaining
maximum values at the high-molar masses that range
between 1.27 and 1.60. So far, no explanation can be given
for the different tendencies and values of the LD observed
by Netopilik®® with respect to Gaborieau et al!®’ One
important difference is that while the polymers analyzed
by Gaborieau et al!® contained both long and short
trifunctional branches, the polymer simulated by
Netopilik®*! only contained long branches with tetrafunc-
tional units.

The present computer simulation study was carried out
under the auspices of the IUPAC project: “Data Treatment in
SEC and Other Techniques of Polymer Characterization.
Correction for Band Broadening and Other Sources of Error”,
Chair G. Meira, http://www.iupac.org/web/ins/2009-019-
2-400. The first part of the work aims at elucidating the
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mentioned controversy on the values and tendencies of the
LD when randomly-branched polymers described by
Equation (8) are analyzed by ideal SEC. The article also
analyzes the errors introduced into the LCBD. In its second
part of the work, the following additional sources of error
are analyzed: presence of BB in the column, and contami-
nation with random noise. All the computer work was
carried out in Matlab.

2. Ideal Fractionation Model

An ideal SEC fractionation was simulated, in order to
investigate the effects of the chromatographically-complex
nature of random branched polymers. The following
hypotheses are adopted: (i) representative calibrations of
the branched classes are obtained from contraction factors
calculated through the Zimm-Stockmayer equations;
(ii) each molecular species in the distribution exhibits
a fixed hydrodynamic volume that is independent of
molecular configuration or conformation; and (iii) local
dispersities are obtained from average properties calculat-
ed in small volumes that emulate a minor mixing in the
detector cells.

Consider the simulated SEC analysis of a crosslinked
polystyrene (obtained by copolymerization of styrene and
divinylbenzene), and dissolved in a 6-solvent (cyclohexane
at 34.5 °C). The weight-based distributions were calculated
through Equation (9a) withy,, = 1250 and y=0.6. The final
values of wj,; were determined after normalizing the r.h.s.
of Equation (9a) with the sum of the contributions by all
the possible molecular species defined by (b, I). The upper
limits of calculation were I[ax=150000 and bpax=75.
At such limits, the following negligible mass fractions
were observed: 2.4 x 107 ° at L.y and 1.3 x 107 for the
branched class with by, =75. The weight MMDs of the
total polymer and its branched classes are represented
in Figure la. It should be noted that while continuous
MMDs are represented, such distributions are strictly
discrete. The following convention was adopted for
the graphical representation of the continuous MMDs in
Figure 1a: (i) the MMD of the total polymer is normalized
to unitary area;*? and (ii) for each of the branched classes,
the area under their MMDs coincides with their mass
fraction in the total distribution.

Table 1 presents the discrete number- and weight
LCBDs [N'(b) and W'(b), respectively; with (b=0, 1, ...,
75)]. These distributions were calculated through: N'(b) =

11:53 Ooo(wal/MbJ) and W'(b) = 11:5? 000 Wp,]. Table 1 also
presents the number-average molar masses and disper-
sities of each branched class. As expected, the linear
fraction (of b=0) is the most abundant, and exhibits a
global dispersity of almost 2. For increasing b’s, the mass
contributions are reduced, and the dispersities tend to

M
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Figure 1. Basic simulation example: (a) continuous MMDs of
the total polymer and branched classes of b (=o, 1, 2,..., 75)
tetrafunctional branch units per molecule. (b) Molar mass
calibrations of the linear fraction (b=0), and of the branched
classes b=s, 10, ..., 75 (only a few calibrations are shown to
avoid superimposition of curves).

unity. The global averages are presented in the first
row of Table 2; where the (number- and weight-based)
average branching degrees were calculated through: b, =
>, IN'(b) x b}/ O N'(b) and by, = 3, [W'(b) x b]/ 3. W' (b).

Consider the equations employed for simulating
the calibrations of the different branched classes. With
perfect fractionation by hydrodynamic volume, one can
write:

[],(V) x Mp(V) = [n]} (V) x M} (V)
a+1 (14)
={K@p)" V) (b=1,2, ...)

where [5]] and M; are the intrinsic viscosity and molar
mass of the linear molecule that elutes at a given V. From
Equation (2), (3), and (14), it results:4*2!

L M) KOEEM, M
94 =94 = LMy~ KB (Mb> )

Solving for M, with the first and last terms of
Equation (15), and then taking logarithms, one obtains:

'A\
Me \lii"‘§
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Table 1. Basic simulation example. Number- and weight-based
distributions of the number of long chain branches per molecule,
and number-average molar masses and dispersities of the linear
class (b=0), and branched classes with b=1, 2, ..., 75.lPlease
mention the significance of bold values in Table 1-3. 1

Macromol. Theory Simul. 2013, DOI: 10.1002/mats.201300124
© 2013 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim

b N'(b) W’'(b) M,(b) My(b)/ M,(b)
0 0.9051 0.5928 50124 1.9979
1 0.0617 0.1616 200392 1.2497
2 0.0168 0.0772 350661 1.1427
3 0.0069 0.0451 500929 1.0999
4 0.0034 0.0293 651197 1.0768
5 0.0019 0.0204 801466 1.0624
6 0.0012 0.0148 951,734 1.0525
7 0.0008 0.0111 1102003 1.0454
8 0.0005 0.0085 1252271 1.0399
9 0.0004 0.0067 1402540 1.0356
10  0.0003 0.0053 1552808 1.0322
75 9.089 x 1077 1.344 x 10~ ° 11320255 1.0044
log My(V) = log M} (V) — ——log g5 (V);
a+1 (16)

(b=1,2 &,...75)

The following calibration was adopted for the linear
class (curve b =0 of Figure 1b):

log M3 (V) = —0.0036686V> + 0.179044V?
—3.13512V + 24.4522 (17)

Equation (17) corresponds to the chromatograms of a set
of narrow polystyrene standards analyzed with a 2-column
set (HRE4 and HRE5 from Waters), that covered a broad
fractionation range. The following values were adopted for
the MHS constants of linear polystyrene in cyclohexane at
34.5°C: k=8.57 x 10 *dl g %; and o« = 0.5.4°!

The calibrations of branched classes with b=1, 2, ...
(Figure 1b), were calculated through Equation (16) after
substituting Equation (17); with the parameters o = 0.5 and
¢=0.6,"% and the values of g, obtained from Equation (12)
with b=1, 2, ..., 75. Jackson'** developed an expression
that is equivalent to Equation (16), but assuming linear
calibrations for the linear and branched classes.

Eachi-th molecular species in the global MMD (withi=1,
2,...,150000 x 76 =11 400 000), was characterized by the
following variables: (i) the polymerization degrees (l;, by);
(ii) the molar mass M; = Mp; = 104.15 x [+ 130.19 x b;
(iii) the weight fraction w;=w,,, [Equation (9a and b)];
(iv) the molar fraction n; = w;/M;; (v) the contraction factors
ga;and g, ; calculated through Equation (12) and (3) with
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I Table 2. Basic simulation example: global average molar masses and branching degrees. The true values are highlighted in bold font.

Source Estimated
of bias distributions M, M, M, /M, b, by by / b,
“True” averages - - 76536 323420 4.2257 0.1758 1.4858 8.4516
Ideal Fractionation (2) W (log My,) 76536 322650  4.2157 - -
Model (1) W (log M) 76 590 323420 42228 - -
(1) W(by,) - - - 0.1754 14549 82947
Estimates from (1)+(2)+(3) “WEB(log"MEBB) and 124130% 3489207 238110 0.3505? 1.6213Y 47257
simulated ~/BB (BB
chromatograms (1)+(2) ‘WBB(log MBP) and 81177 323420 3.9842 0.2340 14917 6.3748
VBB (pBB)

(1) Ideal fractionation by hydrodynamic volume with a minor mixing in the detection cells. (2) BB-affected chromatograms.

(3) Contamination of chromatograms with additive random noise.

b,=b=0,1, 2, ..., 75; (vi) the elution volume V; through
Equation (16) and (17); and (vii) the intrinsic viscosity
[nli=g',; K M{ [Equation (2)]. Then, all 11 400 000 molecular
species were reordered according to increasing elution
volumes (V;). A truly perfect fractionation by hydrodynamic
volume would produce a discontinuous mass chromato-
gram represented by a train of impulses, with an impulse at
each discrete V;. To simulate a more realistic (albeit still
ideal) mass chromatogram, a minor mixing was simulated
in the detection cells, while still assuming perfect fraction-
ation in the columns. Such minor mixing was simulated by
first dividing the total range of elution volumes into 171
regular intervals of AV =75 pl (a volume equal to one half
the added volumes of the 3 typical detectors in triple
detection); and then calculating the following instanta-
neous averages at each discrete V; (j=1, ..., 171): (i) weight-
fraction W(V))=>",w;; (ii) average molar masses M,(V))
[= > M/ nland M, (V) [= 3 ,wiM;/ 3" ,w]; (iii) weight-
average intrinsic viscosity [n]u(V}) [== > ;wi[n];/>wil;
(1v) average branching degrees [b,(V))=>";n;b;/> ;n; and
by (V) =>"w; b;/> wi]; and (v) weight-average contrac-
tion factor gau(V)) =>",wig, ;/>;w;:. All the previous sum-
mations are extended over all i species contained in each j-th
interval. The logarithmic nature of the calibration curve
induces alarge variation in the number of molecular species
(i) contained in each successive interval. Thus, while the first
threeintervals (withj=1,2, 3), respectively contain 880,841,
788,179, and 706,328 types of molecular species; the last 11
intervals (ofj=161,162,...,171),respectively contain 2,1, 2,
1,0,2,0,0,0,0, and 1 molecular types. The low number of
molecular types (and even absence of molecules) in the final
elution volume intervals is a consequence of the high
resolution of SEC at such limit. In what follows, we adopt for
simplicity: V; = V. The final results are in Figure 2 and in the
mid-section of Table 2. Additionally, Sections 1 and 2 of
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Acalculation restricted to the Calculation Range (Figure 3).

the Supplementary Information present a calculation flow-
sheet and some of the intermediate simulation variables.

Figure 2a shows the almost-coincident local calibrations
log M,,(V) and log M, (V). At the lower molar masses, these
calibrations are also almost coincident with the calibration
of the linear class; while at the higher molar masses tend
toward the calibration of the highest branched class.
Figure 2b presents the LDs based on the average molar
masses [M,(V)/M,(V)] and on the average branching
degrees [b,(V)/b,(V)]. While M,,(V)/M,(V) exhibits a mod-
erate maximum of 1.0035 at M =386 000gmol™*; b,(V)/
b,(V) monotonically increases with V, and tends to 1.1 at
high V’s (where b, (V) ~ b,,(V) =~ 0, and most of the molecules
are linear). Note that the contribution of linear molecules
towards b, (V) and b,(V) is indirect, through the denomi-
nators of > ,n;b;/> ;n; and > ,w;b;/> ;w;. The final oscil-
lations in M,(V)/M,(V) and b,(V)/b,(V) at high V’s are
caused by the few molecular species and/or absence of
molecules in the final AV intervals.

Figure 2c shows that the true unbiased MMD [W(log M)]
almost coincides with its estimates W(logM,) and W
(logM,); that were respectively obtained from [W(V),
My(V)] and [W(V), M, (V)]. As expected, W(log M,,) produces
an unbiased global M, but slightly underestimated values
of M,, and M,, /M, ; while W(log M,,) produces an unbiased
global M, but an overestimated M, and anunderestimated
M,,/M,, (Table 2).

Figure 2d compares the true discrete weight LCBD [W'(b)]
with its estimate W(b,), obtained from W(V) and b,(V).
Following the case of continuous MMDs, continuous
LCBDs were also normalized to unitary area. The branching
function b,(logM,) was obtained from b,(V) and
log M,,(V), and the global averages b, and b, (see Table 2)
were calculated through: b, = 3 [[W(log My,)/M,]x
bn(logMy)]/ 3 [W(log My,) /My and by, = 3" [W(log M) x
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1.0
c)

W(logM) =~

= W(lOgM,) =

0.51 = W(logM,)

(mol/g)

0 — ‘
10° 10° 10° 10° 10’
M, M, M, (g/mol)
il d)
0.6 1w
Mass e - 4.0
fraction
0.4

W(b,) r 2.0
0.2 1 / [«

0 il ‘ 0
10
b’ bn

(c) True MMD [W(logM)], and its estimates W(logM,) and W(logM,). (d) True discrete weight LCBD [W'(b)], and its continuous

I Figure 2. Basic example and ideal SEC. (a) Local (or “ad hoc”) molar mass calibrations. (b) Local dispersities M,,(V)/M,(V) and b,,(V)/b,(V).

estimate [W(b,)].

bn(log My)]/ 3. W(log My,). While the estimate of b, (=
0.1754) almost coincides with the true value of 0.1758, a
larger difference is observed between the estimate of

by (= 1.4549) and the true value (= 1.4858).

3. Effects of Band Broadening and
Measurement Noise

Let usrepresent the ideal DR, LS,, and SV chromatograms by
spr(V), sts(V), and ssy(V), respectively. Such ideal chromato-
grams (i.e.: BB-free, noise-free, and perfectly corrected for
interdetector volumes) were calculated through:

SDR(V) = kDRW(V); with kDR =1 (18)

s1s(V) = kisW(V)M,,(V);  with kg =1.5 x 107°
(19)

Ssv(V) = ksz(V)[?]]W(V); with ksv =0.01 (20)

where the factors kpg, kis, and ksy are assumed constant
(an assumption that is inapplicable onto oligomers or
copolymers exhibiting variation of on/dc with V). Note
that these factors also include the detector gains and

'A\
Me \liiﬂ}

www.MaterialsViews.com

Early View Publication; these are NOT the final page numbers, use DOI for citation !!

Macromol. Theory Simul. 2013, DOI: 10.1002/mats.201300124
© 2013 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim

physical parameters specificto the corresponding detection
system. Furthermore, the values of kpg, kis, and ksy
were selected in order to produce similar numerical values
of the simulated ideal chromatograms spg(V), sis(V),
and ssy(V) (Figure 3a).

The uniform BB function in columns and capillaries is
represented by h(V) [see Figure 3a], and it was obtained from
the mass chromatogram of a pure solvent injected in the
above-mentioned experimental system. The BB-affected
chromatograms s28 (), sB8(V), and s22 (V) were obtained by
convolution of h(V) with spg(V), ss(V), and ssy(V), respec-
tively. Then, such chromatograms were contaminated
with zero-mean white noises through:

S (V) =sg°(V) +£(V); (d=DR,1S, SV) (21)
where the oversymbol “~” indicates a noise-affected
variable; $88(V) is any generic BB-affected and noisy
chromatogram; and &,(V) is a Gaussian random sequence
of zero mean and constant standard deviation o, For
the LS, chromatogram, o, was adopted equal to 0.5% of the
maximum. For the DR and SV chromatograms, o;=0.1% of
their maximum values. Figure 3a compares the BB-affected
and noisy chromatograms with their ideal counterparts.
Note the small effect of BB, due to the fact that the mass
chromatogram (of M,, /M, = 4.2257) is much broader than
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Figure 3. Basic example with BB and measurement noise. (a) Ideal chromatograms, noisy and BB-affected chromatograms, and BB function
h(V). (b) Local calibration, and limiting noise-free calibrations with b=0 and b=7s. (c) True and estimated MMDs. (d) MHS plots of the
analyzed polymer and its linear homolog inside the Calculation Range. (e) Estimated contraction factors and resulting branching function.

(f) True and estimated LCBDs.

the BB function h(V). Also note that (due to the relatively
low adopted standard deviations) the noisy chromato-
grams look all quite smooth [except perhaps for minor
oscillations that are visible in $E2(V)].

In all that follows, the oversymbol “7indicates that the
variable was calculated from the BB-affected and noisy
chromatograms. From Equation (18) and (19), the local

calibration of Figure 3b was calculated through:

3 ko SEB(V)
BB _ DR °1S
logME8 (V) = log (_kLs ey (V)) (22)
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This calibration is highly oscillatory outside the
Calculation Range (Figure 3b). Figure 3c compares the true
continuous MMD [W (log M)] with its estimate W(log MEP)
obtained from $88(V) and log MEB(V). While log MZ3(V)
appropriately reproduces the high molar mass half of the
MMD, it is unacceptably noisy in its low molar mass half,
due to the poor signal-to-noise ratio of s28(V)/sE8 (V) in
Equation (22). To solve for this problem, it has been

suggested to extrapolate the local calibration outside the
Calculation Range.!3*44!
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Consider the estimation of the branching function and
continuous LCBD inside the feasible Calculation Range of
Figure 3d and e. First, from Equation (18) and (20), the
intrinsic viscosity of the branched polymer was calculated
through:

_ kor 559(V)
ksv SER(V)

[l (V)

(23)

and the MHS plot log[?;}aB(log]\:/IﬁB) was obtained from
[72(V) and log 1\7158 (V) (Figure 3d). Similarly, the MHS plot
of the linear homolog log [7]™® (log M) was obtained from
B (V)[= K x MBB(V)*] and log MB3(V) (Figure 3d). As

expected, both MHS plots coincide at the low molar masses,
where the molecules are essentially linear. Second,

~/BB 2
§', (log MB®) was obtained through (see Figure 3e):

BB - 7]%® (log MEB
57 (1og ey — 1 (09 1) (24)
(7" (log MZP)
. » BB 3 ~/BB 2
Third, g, (logM®®) was calculated from g, (log MEB)
and Equation (3) with ¢=0.6 (Figure 3e). Fourth, the

branching function estimate }:JEB(ZOQI\:/IE/B) was obtained

by injecting the values of §4BB(Zog ]\7[33) into Equation (12)
~ BB 2

(Figure 3e). Finally, the LCBD estimate W (bBB) was

obtained from WBB(log MEB) and bBB(log MB®) (Figure 3f).
The global averages were evaluated in the Calculation

Range of Figure 3c-e, and are presented in the

penultimate row of Table 2. The following expressions were

employed for calculating the average branching degrees:

by = 2| [ og e/t  B2(1og )| /" ogtiey i

=~ “BB

and by,=% [W (log M) x ZﬁB(zogz\:AgB)]/z W (log M%), As
expected, all the global averages appear overestimated
because the molecular species with M < 32 800 g mol " were
excluded from the calculations. For completeness, the last
row of Table 2 presents the average values obtained from the
BB-affected but noise-free chromatograms, and calculated in
the complete range of the chromatograms. As expected,
the estimates of M,, and b,, are unbiased, while M, and b, are
overestimated, and therefore M, /M, and b,, /b, are under-
estimated (last row of Table 2).

4, Further Simulation Results

4.1. Effect of Variations in the Elution Volume Interval

The basic simulation example was reconsidered, to analyze
the effects of variations in the averaging interval AV
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(initially adopted =75 plL). To highlight the effect of the
chromatographically-complex nature of the polymer, AV
should be small enough to emulate a perfect fractionation
by hydrodynamic volume, but also large enough to
allow for a minor mixing in the detector cells (in the limit
of AV — 0, the mass chromatogram is a train of impulses).
The following alternative AV values were investigated:
10, 25, and 150 pL. Figure 4 presents the effects on the
LD functions. When AV is reduced to 25 or 10pL, all
the M,(V)/M,(V) function is slightly lowered: while a
significant increase in M,(V)/M,(V) is observed when AV
is doubled to 150 pl (Figure 4a). In contrast, variations of
AV show a negligible effect on b,(V)/b,(V) (Figure 4b).

4.2. Sensitivity to Variations in ¢, k, and «

Consider the effect of errors in the parameters (g, k, and «),
when employed to calculate the global averages b, and
by, from the ideal (BB-free and noise-free) chromatograms.
The averages proved moderately sensitive to errors in ¢;
and for example a variation of +10% in ¢ induced reductions
of 13% in b, and 16% in b,,. In contrast, small errors in k or
o importantly affect the same estimates. Thus, variations
of +1% in k, induced variations of +8% in EW and +43%
in En; while variations of +1% in « induced variations of
+58% in b,, and +250% in b,,.

1.006
M,/ M, 2
1.004 - 150 ul
1.002 1
1.000 - ' . . . : .
12 14 16 18 20 22
V (ml)
1.2 ;
b):
b /b, AV=150 ul—»
.1 Wil
1.0 - AV

12 14 16 18 20 22
V (ml)

Figure 4. Sensitivity of LDs toward changes in the mixing interval
AV with respect to the basic case of 75uL. (a) Effect on
M, (V)/M,(V). (b) Effect on b, (V)/b,(V).
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I Table 3. Simulation example of an equivalent branched polymer containing trifunctional branch units: global average molar masses and

branching degrees. The true values are highlighted in bold font.

Source Estimated

of bias distributions M, m,, M, /M, b, by by /by
“True” averages - - 72315 185690  2.5678  0.2222  0.8556  3.8505
Estimates from (1) +(2)+(3) ~W®B(log"MB8) 1220107 203850” 16708% 041557 088327 21256%

simulated and “/BB (bEB)

chromatograms

(1) Ideal fractionation by hydrodynamic volume with a minor mixing in the detection cells. (2) BB-affected chromatograms.

(3) Contamination of chromatograms with additive random noise. ¥

in the Supplementary Information).

4.3. Polymer with Trifunctional Branch Units

Toinvestigate the effect of functionality of branch units, the
basic example was re-simulated, but for a polymer
containing trifunctional units; and defined by Equation (8)
with p=0.9984 and p=0.00048. The global averages are
shown in the first row of Table 3. Compared to the
tetrafunctional case (Table 2), the trifunctional polymer
exhibits similar values of M, and b,, but considerably
reduced global dispersities (Table 3). To simulate the SEC
fractionation, the calibrations of the branched classes were
recalculated through Equation (16) and (17), but introduc-
ing the gs contraction factors calculated through Equa-
tion (10), while maintaining all other parameters un-
changed. The estimated global averages exhibit very similar
tendencies to the tetrafunctional case (Table 3). For
completeness, Section S3 of the Supplementary Informa-
tion presents the basic MMDs and the evolution of the main
output variables.

5. Conclusion

The simulated examples assumed #-condition, while good
solvents are employed in real SEC. So far, it is impossible
to produce representative predictions for an equivalent
SEC fractionation in a good solvent. The reasons are
experimental and theoretical limitations on the effect
of good solvents on: (i) the g and g’ contraction factors,
and (ii) the distribution of column pores. For the best
known case of star polymers, direct determinations of the
g and g’ contraction factors indicate a relatively minor
effect of solvent power on the draining exponent &.*” If this
were also the case of randomly-branched polymers, then
the main observations presented in this work would be
applicable to the case of good solvents.

Following Netopilik,'**! the developed SEC model con-
siders a random polymer with tetrafunctional branch
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Calculation restricted to a feasible Calculation Range (see Figure S3c

units dissolved in a 6-solvent, and under perfect fraction-
ation by hydrodynamic volume. However, different (but
complementary) theoretical models were employed for
estimating the molar mass based LD. In this work, nonlinear
molar mass calibrations were assumed, and M,,(V)/M,(V)
is the result of a minor mixing in the detector cells.
In Netopilik,!*® linear calibrations were assumed, and
M, (V)/M,(V) was estimated from readjusted contraction
factors obtained by Monte-Carlo simulations involving a
variety of molecular configurations and conformations.
In spite of the different approaches, the results by
Netopilik®* are qualitatively similar to those of the
present work in that M,(V)/M,(V) tends to unity at the
low molar masses, and attains a maximum at a high
molar mass value. However, our prediction for the
maximum of M,/(V)/M,(V) (=1.0035) is considerably
lower than the values predicted by Netopilik.*®! The
qualitative tendencies of M, (V)/M,(V) calculated in this
work coincide with Netopilik,**! but differ substantially
from those of Gaborieau et al.[®! where the LD was seen
to increase (rather than decrease) with elution volume.
The reasons for these discrepancies remain unknown, and
more accurate experimental measurements are required
to elucidate the controversy.

Unlike previous theoretical investigations,**3? the
present work also analyzed the errors in the LCBD, and
the effects of BB and measurement noise. For perfectly
accurate and noise-free measurements, BB alone induces
a negligible biases into the global averages (bottom row
of Table 2); and this result seems reasonable bearing in
mind the broad MMDs of randomly-branched polymers.
In contrast, the effect of measurement noise is serious,
and possibly a main limitation of triple detection SEC. In
effect, even minor noises induce intolerable errors in
the estimates of M,,(V) and [n].(V) at the chromatogram
tails, thus preventing quantitative estimations of the
MMD and LCBD outside the feasible calculation range.
Furthermore, the branching function and LCBD are highly
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sensitive toward errors in the MHS parameters. Curiously
however, errors in the ¢ exponent proved relatively
less important; and this result is consistent with the
observation by Netopilik!**! on the minor effect of the &
exponent on the SEC fractionation mechanism.

In summary, the main result of this article is that
under ideal conditions, the chromatographically complex
nature of random-branched polymers does not prevent
the accurate determination of the MMD, and (to a lesser
degree) of the LCBD. On the negative side, the highly
nonlinear nature of the required data processing renders
such determinations extremely sensitive to measurement
noise and to errors in the calculation parameters.
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