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ABSTRACT 

Water availability and sanitation are among the UN Sustainable Development goals for 2030. 

Remote sensing techniques are used to monitor and retrieve quality estimators from water 

bodies. Clean water is a scarce resource fundamental for human development and well-being. 

Treatment plants depend on the current water quality state to properly provide clean water. 

Combining laboratory measurements, provided by a water plant in Resistencia city, Argentina, 

and remote sensing data, i.e., surface reflectance, from Sentinel-2 platform, several algorithms 

were developed, trained, and compared for turbidity estimation. The model with the highest 

performance metrics was a random forest model, with Pearson’s coefficient of determination 

(R2) 0.918 and root-mean squared error (RMSE) 138.8 nephelometric turbidity units (NTU). 

Global feature importance and partial dependencies profiles techniques were applied to the 

random forest model to understand the spectral bands effects. Turbidity maps and time series 

were made and analyzed. 
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INTRODUCTION 

Ensure water availability is one of the Objectives of 2030 Agenda for Sustainable Development 

by UN [1]. To achieve this, satellite remote sensing techniques can be applied to study and 

monitoring of water bodies, since it’s possible to retrieve spectral data from large portions of 

the Earth surface. Applied remote sensing can be used to estimate biophysical water parameters, 

such as total suspended matter [2], chlorophyl-a [3], Secchi disc depth [4] and turbidity [5]. 

These algorithms can be relatively simple equations [6], or a more complex approach, like 

machine learning techniques [7]. Remote sensing techniques can be used for research in a wide 

range of environmental topics, such as land pollution [8] and glacier retreat [9]. 

 

Sentinel-2 (S2) is a spatial mission developed by the European Space Agency (ESA), consisting 

of two platforms. The MultiSpectral Instrument (MSI) is the optical sensor mounted in S2, with 

a maximum spatial resolution of 10 m, spectral range of 440 nm to 2200 nm, and a revisit time 

of 5 days for the constellation. S2 database is free and open access, available from the 

Copernicus Open Access Hub. S2-MSI has been used in water monitoring and parameter 

estimation, like color of water [10], chlorophyll-a concentration [11], and CDOM [12]. The 

generated products from S2-MSI are reliable [13] due to a low radiometric uncertainty [14]. 
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The Paraná River is the second longest river in South America, running through 4000 km [15]. 

In Argentina, is the natural boundary of multiple provinces, until it reaches the Río de la Plata, 

to end in Atlantic Ocean. Paraguay River, with 2550 km [15], is a tributary of Paraná River, in 

its middle basin, North-East Argentina. Due to the high sediment concentration in Paraguay 

River, the discharge made into Paraná River changes the characteristics of its composition, 

creating two distinct regions of high (West) and low (East) sediment concentration [16]. 

 

The Metropolitan Area of Gran Resistencia (MAGR) is an urban region in Chaco Province, 

North-East Argentina. It’s made of four cities, including the capital city of Chaco, Resistencia. 

MAGR has a population of 423000 inhabitants, according to the last census [17]. Paraná River 

has a large impact in its society: fishing industry, tourism, recreational activities of the local 

communities, and transportation route [18]. The water source for the MAGR potabilization 

plant is in an arm of Paraná River, Barranqueras River, which is connected to two main rivers 

in the metropolitan area, Negro and Tragadero Rivers. The water plant needs to adapt its 

potabilization process to ensure the removal of large amounts of sediments presents in the 

water. Monitoring and understanding the spatial distribution of water turbidity in Barranqueras 

River is a valuable input to the overall system since it can be used to give support to the making 

decision process. Remote sensing techniques can be applied to retrieve spectral data from the 

water, and thus create a model to estimate turbidity remotely. 

 

In this study, daily water turbidity values were given by the Resistencia water plant. Using S2-

MSI images, processing level L2A, surface reflectance (RS) was extracted for the water inlet 

location, at surface level. A database of spectral values and turbidity measurements was built 

to train several mathematical models, including a machine learning approach, a random forest 

(RF) model. The model with the best performance metrics was selected, and turbidity maps and 

time series were made for further study. To understand the spectral bands effect in the whole 

model, two different techniques were applied for further explanation. 

AREA OF STUDY 

The region of interest is shown in Fig. 1. The inset image corresponds to Argentina map, with 

Chaco province (pink), MAGR location (white dot) and Paraná River extension (blue line). The 

main image is a satellite view of the area of study, with the potabilization treatment plant 

(yellow triangle) and main rivers. The sample point (red star) was selected over the 

Barranqueras River, where the pumps take in raw water, so the spectral properties from satellite 

products are representative of the water treated. 

 

From the inlet point, the water is pumped to a chamber from which its distributed to the different 

plant sections. In this chamber, samples are collected and delivered to the in-site laboratory to 

estimate a series of parameters, mainly turbidity, pH, conductivity, and alkalinity. The next step 

is filtration, where the sediment concentration is critical since filters and flocculant reagents are 

needed. 
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Figure 1. Region of study, indicating main rivers, water plant location and sample point. 

Inset: Chaco Province relative to Argentina, MAGR location and Paraná River extension. 

 

MATERIAL AND METHODS 

This section describes the source and characteristics of the laboratory and remote sensing data, 

and the mathematical model methodology. 

Laboratory data 

Daily measurements were given by the water treatment plant, from 2017-01-01 to 2021-09-03. 

In this time span 1732 dates were recorded. The parameters were pH, conductivity (µS/cm), 

alkalinity (ppm CaCO3) and turbidity (NTU). Alongside these data, water samples of our own 

were taken to assess more sediments related parameters, such as total suspended matter (TSM), 

total dissolved matter (TDM), and total matter. These parameters are related since total matter 

is the sum of TSM and TDM. The number of samples obtained was 28, from 2021-08-24 to 

2022-12-07. The measurements followed the Standard Methods techniques [19]. 

Remote sensing data 

Satellite RS data was obtained from S2-MSI, product L2A. Table 1 resumes the characteristics 

of both sensors since products of platform S2A and S2B were used. Maximum spatial resolution 

of 10 m (when available), 5 days revisit time, and 11 spectral bands were used. Bands B09 and 

B10 were discarded since no surface measurement is done at those wavelengths, 945 nm, and 

1373 nm, respectively. S2-MSI has been used to estimate turbidity by band ratios [20]. 

 

S2-MSI L2A products are atmospherically corrected by Sen2Cor processor [21]. Copernicus 

Open Access Hub provides complete, open, and free access to S2 products. For the same period, 

382 images were acquired. Using the quality assessment band, QA60, the images with clouds 

were discarded. This method was preferred over more complex approaches [22], since QA60 

band is a coded bit mask detecting clear sky, dark clouds, and cirrus clouds.  
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Table 1. Spatial and spectral resolutions of platforms S2A and S2B, S2-MSI. 

 

  S2A S2B 

Band Spatial 

resolution (m) 

Central 

wavelength (nm) 

Bandwidth 

(nm) 

Central 

wavelength (nm) 

Bandwidth 

(nm) 

1 60 442.7 21 442.3 21 

2 10 492.4 66 492.1 66 

3 10 559.8 36 559.0 36 

4 10 664.6 31 665.0 31 

5 20 704.1 15 703.8 16 

6 20 740.5 15 739.1 15 

7 20 782.8 20 779.7 20 

8 10 832.8 106 833.0 106 

8A 20 864.7 21 864.0 22 

11 20 1613.7 91 1610.4 94 

12 20 2202.4 175 2185.7 185 

 

After removing the dates with clouds over the study area, 181 images remained to continue the 

analysis. The RS values extraction was made using a 3x3 pixel window around the point near 

the plant water entrance, on Barranqueras River. The final pixel value was the mean of the 

individual values in the grid. 

Modeling  

The target parameter was turbidity with the spectral band as predictors, as a mathematical 

regression problem. As a first step, the relationship between turbidity and Rs was studied. 

 

Two main modeling methods were used: linear, with algebraic relationships between the 

predictors, and a based-tree machine learning RF approach. To perform the linear modeling 

spectral bands and normalized difference turbidity index (NDTI) were used. NDTI is obtained 

by the red and green bands [23], B03 and B04, respectively. This index is used for water quality 

assessment and it’s proportional to turbidity [24].  

 

Machine learning techniques were used to improve traditional methods for parameter retrieval 

[25]. RF operates by an ensemble of decision trees [26], each one trained by a subset of the 

whole data, and the final regression value is the mean of all tree’s individual estimates. RF can 

manage many predictor variables and maintain low levels of over-fitting [27], a negative aspect 

in modeling. 

 

RF modeling used all spectral bands available (Table 1), since this method is appropriated to 

find non-linear relationships between multiple predictors. To improve the performance of RF, 

a tuning step was applied to obtain the best arguments required for a RF model, called 

hyperparameters. The tuned hyperparameters were ‘minn’, the minimum number of samples 

taken from the dataset to form a node in a decision tree; and ‘mtry’, the number of predictors 

that will be sampled. The ‘trees’ hyperparameter was fixed at 1000 units. Both steps of selection 

of sample points and predictors are random, across all trees, so the final turbidity estimation is 

an average value of all tree’s individual values.  

 

The tuning process applied was made by the racing technique [28]. Tuning racing techniques 

evaluate the model in a subset of resamples and obtained the performance metrics, continuing 
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only with the hyperparameters candidates that showed good results. Usually racing techniques 

are faster to compute than traditional methods, such as grid search [29].  

 

To measure the model’s performance the following metrics were used: Pearson’s coefficient of 

determination (R2) and root mean squared error (RMSE). Following equations show the 

mathematical expressions for these metrics: 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑥𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2
𝑛
𝑖=1

 (1) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑥𝑖)2
𝑛
𝑖=1

𝑛
 (2) 

 

Where 𝑖 represents each measurement, from a total of 𝑛 samples. 𝑦𝑖 are the real turbidity values, 

and 𝑥𝑖 the estimated values from the correspondent model. For 𝑅2, Eq. 1, 𝑦̅𝑖 is the mean value 

of 𝑦𝑖. 
 

To produce a model, linear or RF, the dataset was split into two parts: 75% of the samples was 

used for training and tuning of the corresponding model; the remaining 25% was used for 

testing and to finalizing the model, that is, to get the last version of the model specification. 

Since the original dataset corresponded to a time series of turbidity values, the testing dataset 

corresponded to the most recent dates. This methodology followed the best practices for data 

modeling [30]. The testing dataset was preserved and was not used in the training, so the 

performance metrics were calculated with new and later data points. The final model was 

selected according to the performance metrics.  

 

Several maps showcasing the turbidity spatial distribution were made applying the selected 

model to S2-MSI products, in the Barranqueras River, for four different dates. The spectral 

index MNDWI (modified normalized difference water index) was used to mask the water from 

the scene [31]. A time series of turbidity was retrieved by the selected model and compared 

with the training values. 

RESULTS AND DISCUSSION 

This section contains the main results of water characterization: the process of model selection, 

tuning, performance metrics and comparisons. Two techniques were applied to the final model 

to explain the main features. Maps were made to visualize the turbidity spatial distribution. 

Water characterization  

The parameters measured by the water treatment plant are shown in Fig. 2 as time series. The 

number of samples (n) is shown in the top right corner of each panel. 

 

In 2019, Paraná River scarce rains and drought caused an historic low level of water [32]. This 

can be seen in the steady increase in turbidity and conductivity from 2019. Conductivity from 

the same year started to be more disperse than previous years. Turbidity presented yearly cycles, 

with high values at the beginning of each year, between January and April-May, then followed 

by a low-turbidity period. 
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Figure 2. Time series of measured water parameters: turbidity, alkalinity, pH, and conductivity. 

 

Main statistical values of the time series, by parameter, are resumed in Table 2. Mean, median, 

standard deviation (SD), initial and final sampling date and number of samples (n). 

 

Table 2. Statistical summaries of measured water properties. 

 

Parameter (unit) Mean Median SD Initial date Last date n 

Turbidity (NTU) 280.7 89.8 328.2 2017-01-01 2021-09-30 1732 

Alkalinity (ppm CaCO3) 40.0 40.0 7.9 2017-01-01 2021-09-30 1732 

pH 7.3 7.3 0.2 2017-01-01 2021-09-30 1732 

Conductivity (µS/cm) 293.6 220.2 205.6 2017-02-10 2021-09-30 1690 

TSM (ppm) 84.2 30.0 171.6 2021-08-24 2022-12-07 25 

TDM (ppm)  195.9 166.8 100.8 2021-08-24 2022-12-07 26 

Total matter (ppm) 281.9 209.5 212.1 2021-08-24 2022-12-07 25 

 

To estimate turbidity from RS is necessary to verify a relationship between them. Fig. 3 shows 

the spectral signatures of all the observations in light grey. Grouping the data points by turbidity 

ranges, mean spectral signatures were obtained. Lower turbidities (<150 NTU) presented the 

lowest RS. As the turbidity range increased, the spectral signature response raised, until values 

higher than 1050 NTU. 
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Figure 3. Mean spectral signatures per turbidity range, for S2-MSI bands. 

 

The spectral signatures in Fig. 3, bands B01, B11 and B12 are not sensitive to the changes in 

turbidity, since the points for different turbidity ranges remained in the same position. Bands 

B05, B06 and B07 presented the highest changes. These bands are related with algorithms to 

estimate turbidity [5]. 

Model selection 

Several models were tested to estimate the inlet water turbidity for the water treatment plant. 

The predictors variables were selected according to the model used. For RF, all S2-MSI bands 

(Table 1) were used as predictors. Traditional linear models used the following variables: an 

interaction between B06 and B07; individual bands B05, B06 and B08; and the spectral index 

NDTI. The spectral bands used in the linear models were selected according to the results from 

Fig. 3. 

 

The characteristics and performance metrics for all the tested models are resumed in Table 3. 

The performance metrics were used to select the specific model, and in a later step the model 

is finalized using the preserved dataset for testing, with observations not used in the training. 

 

Table 3. Regression models tested and performance metrics. 

 

Model characteristics Performance metrics1 
Specification Expression RMSE R2 
RF Turbidity ~ all bands 111.4 0.840 
Linear model Turbidity ~ B06 + B07 + B06×B07 121.9 0.802 
Linear model Turbidity ~ B08 142.9 0.736 
Linear model Turbidity ~ B06 145.7 0.732 
Linear model Turbidity ~ B05 155.8 0.693 
Linear model Turbidity ~ NDTI 218.7 0.296 

1Unfinalized models. Final performance values are obtained only after the validation step. 
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Individual bands B05, B06 y B08 presented 0.693, 0.732 and 0.736 as R2, respectively. In a 

similar work [5], also in turbid lakes, for the same bands presented the following values: 0.83, 

0.66 and 0.63 for S2-MSI bands.  

 

RF model is the selected model for the following results, since it presented the best performance 

metrics (in bold), with the lowest deviations (RMSE) and highest correlation (R2). The 

interaction model between B06 and B07 was the second-best model, combining bands in the 

red edge, related to sediments in water [33]. Using single band linear models performed poorly 

in comparison. The NDTI index presented the lowest R2 and the highest RMSE, unlike other 

studies [34]. 

 

The selected RF model was tuned using a racing technique [28]. The hyperparameters tuned 

were the number of predictors randomly sampled for each division in the trees (mtry) and the 

minimum number of observations required for a node to be further divided (minn). The number 

of trees was set to 1000. Table 4 shows the values of the hyperparameters and the main 

characteristics of the final RF model. 

 

Table 4. Tuned hyperparameters of RF model, by racing technique. 

 

RF type Regression 

Training observations 116 

Variables 11 

Trees 1000 
minn 9 

mtry 3 

 

After the model selection the last fitting was performed. For the RF model, the final 

performance metrics were obtained by the testing dataset. These observations were kept apart 

so they have no influence on the modeling. The performance metrics are RMSE 136 NTU and 

R2 0.918, with 39 data points. Noted that these values are different from Table 3, since those 

are obtained from the training data set, and are used only for model selection. Figure 4 shows 

the values measured by the water plant company and the estimation by the present RF model. 

 

 
 

Figure 4. Estimated and measured turbidity values using the validation dataset. 
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The solid line represents the linear relationship between estimated and measured turbidity, with 

the dashed line at 45° per comparison reasons. Lower estimated turbidity values are closer to 

the real values. For higher turbidities, the differences increase, with estimates being lower than 

measured values, with the solid line below the dashed line. The outcome variable presented a 

wide range, with many observations under 100 NTU, and measurements as high as 1100 NTU. 

 

The measured and estimated turbidities, from Fig. 4, are shown as a time series plot in Fig. 5. 

The crosses represented the estimations made by the RF model; the turbidity measures were 

plotted as a solid line. The number of samples in the testing dataset is shown in the top right 

corner. 

 

 
 

Figure 5. Time series of estimated and measured turbidities in validation dataset. 

 

The biggest differences between estimated and measured turbidities in Fig. 5 are within the larger 

values, equivalent to the Fig. 4. The estimations followed the same trend seen in the turbidity time 

series in Fig. 2, with high turbidities in the beginning of the year, followed by lower values in the 

middle and end year. 

Understanding random forest model 

The complexity of a RF model is difficult to explain since the explicit form is not as clean as a 

simpler model, i.e., linear model. The global feature importance is an explanatory technique 

that assists in understanding the driving predictors variables of a RF, aggregated in the entire 

training observations. 

 

The results of the global feature importance for the obtained RF model, analyzing each spectral 

band is shown in Fig. 6. This technique is based on the notion of the overall change in the model 

due to the perturbation of a specific variable [35]. A permutation-based approach is a valuable 

tool for model explanation, since it expected that after the permutation of said variable the 

model performance will decrease [26]. Spectral band B06 presents the most effect in the model, 

according to Fig. 6, since the boxplot has the highest RMSE (105.5 NTU). Close to B06 is B07, 

B08 and B05. Spectral bands B05 [36] and B08 [20] have been reported to be related to 

turbidity. The least effects are given by B02, B03 and B01, since the perturbation of these bands 

have a much lesser impact on the overall model. The vertical dashed line represents the base 

RMSE. 
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Figure 6. Global feature importance of S2-MSI spectral bands in RF model. 

 

Partial dependencies profiles allowed to show the change in the expected value of a model 

estimate alongside a single explanatory variable [35]. According to the global feature 

importance technique, B06 is the spectral band that has the highest effect on the RF model. For 

this band the partial dependencies profile was obtained and is shown in Fig. 7.A. 

 

The grey lines in Fig. 7 correspond to 100 randomly selected observations from the training 

dataset. The thick line indicates the mean. The effect of B06 (Fig. 7.A) on turbidity estimates 

is constant until 0.12 RS, then starts to increase until its highest effect at around 0.18 RS. In this 

range of reflectance, the change in turbidity presented was from 214.2 NTU to 377.9 NTU. For 

comparison, Fig. 7.B corresponds to the same analysis for B01, the band with the lowest feature 

importance as mentioned above (Fig. 6). The partial dependency profile of B01 is constant, that 

is, the turbidity presented no change in the entire range of B01 RS values. This result is 

consistent with Fig. 3 and Fig. 6. 

 

 
 

Figure 7. Partial dependencies profiles for spectral bands B06 and B01. 
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Turbidity maps 

The obtained RF model was applied to the spectral values from Barranqueras River to evaluate 

the spatial turbidity distribution. Maps for four different dates from 2020 are shown in Fig. 8. 

 

 
 

Figure 8. Barranqueras River turbidity maps for four different dates. 

 

The yellow triangle on the top-center of each panel represents the water plant building. A water 

mask was applied to the region of interest to only extract pixel values from the Barranqueras 

River. The mask was made using the MNDWI spectral index [37]. 

 

The Barranqueras River presented a homogeneous spatial turbidity, with low dispersion in the 

values. For any given date in Fig. 8, the range of turbidities was narrow, so no large change of 

color was seen. 

 

Map A (2020-01-07) in Fig. 8 presented relatively lower values, below 200 NTU. Map B (2020-

04-11) had the highest turbidities, above 900 NTU. Then, map C (2020-08-24) with the lowest 

values, under 100 NTU. Finally, map D (2020-12-22) had an increased turbidity, around 100 

NTU. These estimated turbidity maps followed the same measured turbidity trend seen in Fig. 

2 for the year 2020. 
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CONCLUSION 

Inlet water properties are an important input in a water potabilization plant, to set the filtration 

process and the reagents needed for the flocculation step. Specifically, water turbidity is a 

valuable parameter for the decision-making process. 

 

In Resistencia, Chaco province in Argentina, the inlet water properties of the local water 

treatment plant were studied as a time series. Annual turbidity cycles were observed, with high 

values between January to April-May, and lower values for the rest of the year. Combining with 

satellite optical data, a RF model was developed and tuned to retrieve water turbidity from RS, 

measured by MSI sensor in S2 platform.  

 

Several linear and machine learning models were tested for turbidity estimation, with the 

spectral bands as predictor variables. A tuned RF model presented the highest performance 

metrics, with 0.918 R2 and 135.8 NTU RMSE. Applying global feature importance technique 

to the RF model, band B06 was stablished as the most important variable. The partial 

dependence profile for B06 indicated the highest change in the outcome variable. The highest 

turbidity measures presented the biggest differences between measured and estimated 

turbidities. 

 

The maps generated from the RF applied to S2-MSI products follow the same trend as the 

measured turbidities for the year 2020.  

 

Remote sensing techniques, and machine learning modeling, allowed the development of a RF 

model, with high performance metrics, to estimate water turbidity for the contribution of the 

vital process of water treatment. 
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